THE 33RD TEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS MENSION COUVER CANADA JANUARY 18-22, 2020

CONFERENCE CHAIRS

Karen Cheung University of British Columbia, CANADA

David Horsley University of California, Davis, USA

SPONSORED BY

18:00

Adjourn for the Day

CONFERENCE AT A GLANCE

	SATURDAY, JANUARY 18
12:00 – 19:00	Registration
13:00 – 17:00	MEMS Industry Workshop
17:00 – 19:00	Wine & Cheese Welcome Reception
	SUNDAY, JANUARY 19
08:00 - 08:20	Welcome Address Conference Chairs: Karen Cheung & David Horsley
08:20 – 08:35	 IEEE Fellows Recognition in the Field of MEMS/NEMS IEEE Electron Devices Society Robert Bosch Micro and Nano Electro Mechanical Systems Award
08:35 - 09:20	Plenary Speaker I Bill Peck, <i>Twist Bioscience, USA</i>
09:20 - 10:20	Session I – Biomedical MEMS
10:20 - 10:50	Break and Exhibit Inspection
10:50 – 11:50	Session II – Flexible Devices
11:50 – 13:30	Lunch on Own and Exhibit Inspection
13:30 – 15:30	Poster/Oral Session I
15:00 – 15:30	Break and Exhibit Inspection
15:30 - 16:45	Session III – Droplets
16:45 – 17:45	Session IV – Physical & Acoustic Sensors
17:45	Adjourn for the Day
	MONDAY, JANUARY 20
08:00 - 08:45	Plenary Speaker II Takao Someya, <i>University of Tokyo, JAPAN</i>
08:45 – 09:45	Session V – Wearable Devices
09:45 – 10:15	Break and Exhibit Inspection
10:15 – 11:30	Session VI – Biosensors
11:30 – 11:45	MEMS 2021 Announcement
11:45 – 13:45	Lunch on Own and Exhibit Inspection
13:45 – 15:45	Poster/Oral Session II
15:15 – 15:45	Break and Exhibit Inspection
15:45 – 16:45	Session VII – Switches & Resonators
16:45 – 18:00	Session VIII – Microfluidics

CONFERENCE AT A GLANCE

	TUESDAY, JANU	ARY 21
08:00 - 08:45	Plenary Speaker III Ellis Meng, <i>University of Souther</i>	n California, USA
08:45 - 09:05	Invited Speaker I Sindy KY Tang, <i>Stanford University, USA</i>	
09:05 – 09:25	Invited Speaker II Shuhuai Yao, <i>Hong Kong Univers</i> Technology, HONG KONG	ity of Science and
09:25 - 10:05	Panel Discussion	
10:05 – 10:35	Break and Exhibit Inspection	
	Ballroom A	Room 109/110
10.25 11.50	Session IXa – Infrared Detectors	Session IXb – Advanced Biomaterials
10:35 - 11:50	INVITED SPEAKER Tayfun Akin – <i>Mikrosens Elektronik</i> <i>San. ve Tic. A.Ş., TURKEY</i>	INVITED SPEAKER Francesca Santaro – Italian Institute of Technology, ITALY
11:50 – 13:10	Lunch on Own and Exhibit Ins	pection
13:10 – 15:10	Poster/Oral Session III	
14:40 - 15:10	Break and Exhibit Inspection	
15:10 – 16:25	Session Xa – Resonant Transducers INVITED SPEAKER	Session Xb – Gas Sensors INVITED SPEAKER
	Sheng-Shian Li – <i>National Tsing</i> Hua Univ., TAIWAN	Fei Wang – Southern University of Science and Technology, CHINA
16:25 - 17:55	Session XIa – Resonant NEMS & MEMS	Session XIb – Flexible Bioelectronics & Biomaterials
10.20 17.00	INVITED SPEAKER Philip XL. Feng – University of Florida, USA	INVITED SPEAKER Fabio Cicoira – Polytechnique Montréal, CANADA
17:55	Adjourn for the Day	
19:00 - 22:00	Tuesday Evening Event at the	Vancouver Aquarium
l l	WEDNESDAY, JAN	UARY 22
08:00 - 08:45	Plenary Speaker IV Martin Wegener, <i>Karlsruhe Institu</i> (KIT), GERMANY	ute of Technology
08:45 - 09:45	Session XII – Inertial Sensors	
09:45 – 10:15	Break	
10:15 – 11:00	Session XIII – Power MEMS	
11:00 - 12:00	Session XIV – Fabrication & Materials	
12:00 - 12:30	Award Ceremony and Final Remarks	
12:30	Conference Adjourns	

TABLE OF

Meeting Space Floor Plan	3
Plenary Speakers	Ł
Invited Speakers	5
Robert Bosch Award Recipient	5

TECHNICAL PROGRAM

Technical Program Information	7
Saturday Program	8
Sunday Program1	0
Monday Program 1	4
Tuesday Program 1	7
Wednesday Program2	2
Poster/Oral Presentations2	4
Industry Open Posters5	2
Exhibit & Poster Presentation Floor Plan5	6
Conference Announcements5	7
MEMS 2021 Announcement5	8

MEETING SPACE FLOOR PLAN

NORT H	
HS H	
Ballroom Ballroom Ballroom Ballroom	Place
	Canada
Ballroom Foyer	7
West Pacific Terrace	
Plenary SessionsBallroom A	1
Concurrent Sessions a Ballroom A	1
Industry Workshop Ballroom A	
Award Presentations Ballroom A	1
Concurrent Sessions b Room 109/110	2
Poster SessionsBallroom B/C	3
Exhibits	3
Breaks	3
Seating Ballroom D	4
Registration Ballroom Lobby	
Сюак ноот	9

Tuesday Evening Event Bus Pick-Up and Drop-Off 7

SUNDAY, JANUARY 19

Plenary Speaker I (08:35)

BALLROOM A DNA FOR DIGITAL DATA STORAGE Bill Peck Twist Bioscience, USA

MONDAY, JANUARY 20

Plenary Speaker II (08:00) BALLROOM A ELECTRONIC SKINS FOR ROBOTICS AND WEARABLES Takao Someya University of Tokyo, JAPAN

TUESDAY, JANUARY 21

Plenary Speaker III (08:00) BALLROOM A MEMS FOR UNLOCKING THE SECRETS OF THE NERVOUS SYSTEM Ellis Meng University of Southern California, USA

WEDNESDAY, JANUARY 22

Plenary Speaker IV (08:00) BALLROOM A 3D LASER NANOPRINTING Martin Wegener Karlsruhe Institute of Technology (KIT), GERMANY

TUESDAY, JANUARY 21

Invited Speaker I (08:45)

BALLROOM A MICROFLUIDIC TOOLS FOR SINGLE-CELL WOUND REPAIR STUDIES Sindy KY Tang Stanford University, USA

Invited Speaker II (09:05)

BALLROOM A ONE-STEP RT-PCR FOR DETECTION OF MICRORNAS IN EXOSOMES USING DROPLET MICROFLUIDICS Shuhuai Yao

Hong Kong University of Science and Technology, HONG KONG

Session IXa – Infrared Detectors (10:35)

BALLROOM A LOW-COST LWIR-BAND CMOS INFRARED (CIR) MICROBOLOMETERS FOR HIGH VOLUME APPLICATIONS Tayfun Akin Mikrosens Elektronik San. ve Tic. A.S., TURKEY

Session IXb – Advanced Biomaterials (10:35) ROOM 109/110

SMART MATERIALS FOR BIOELECTRONICS PLATFORMS Francesca Santaro Italian Institute of Technology, ITALY

Session Xa – Resonant Transducers (15:10)

BALLROOM A CMOS-MEMS RESONANT TRANSDUCERS FOR FREQUENCY CONTROL AND SENSING Sheng-Shian Li National Tsing Hua University, TAIWAN

Session Xb – Gas Sensors (15:10)

ROOM 109/110 MEMS GAS SENSORS - FROM NANOMATERIALS TO MICROELECTRODES Fei Wang Southern University of Science and Technology, CHINA

Session XIa – Resonant NEMS & MEMS (16:25)

BALLROOM A RESONANT NANOELECTROMECHANICAL SYSTEMS (NEMS): PROGRESS AND EMERGING FRONTIERS Philip X.-L. Feng University of Florida, USA

Session XIb – Flexible Bioelectronics & Biomaterials (16:25)

ROOM 109/110 ORGANIC CONDUCTING POLYMERS FOR BIOELECTRONICS Fabio Cicoira Polytechnique Montréal, CANADA

5

HE

ROBERT BOSCH AWARD RECIPIENT

MICRO and NANO ELECTRO MECHANICAL SYSTEMS

02

The Robert Bosch Micro and Nano Electro Mechanical Systems Award was established by the IEEE Electron Devices Society in 2014 to recognize and honor advances in the invention, design, and/or fabrication of micro- or nano- electromechanical systems and/or devices. The 2020 Bosch Award will be presented on Sunday, January 19th at 08:20.

Ming C. Wu

For pioneering contributions in MEMS optical switches and optoelectronic tweezers.

Ming C. Wu is Nortel Distinguished Professor of Electrical Engineering and Computer Sciences at University of California, Berkeley, and Co-Director of Berkeley Sensor and Actuator Center (BSAC). He received B.S. from National Taiwan University in 1983 and Ph.D. from UC Berkeley in 1988. Prior to joining the faculty at Berkeley, Dr. Wu has conducted research at AT&T Bell Laboratories at Murray Hill, New Jersey (1988-1992) and the University of California, Los Angeles (UCLA) (1992-2004). Dr. Wu has published over 600 journals and conferences papers and holds 30 US patents in Optical MEMS, optofluidics, silicon photonics and optoelectronics. In 1997, Prof. Wu co-founded OMM, Inc. to commercialize MEMS optical switches. OMM became the first company to supply Telcordia-qualified 8x8 and 16x16 switches. Recently, Prof. Wu has pushed the size of optical switches to 240x240 by combining MEMS with silicon photonics. In 2011, Prof. Wu co-founded Berkeley Lights, Inc. to commercialize optoelectronic tweezers

(OET) invented by his group. The OET instrument is capable of sorting, cloning, culturing, analyzing secretions of tens of thousands of single cells on microfluidic chips. The OET instruments have been used by major pharmaceutical companies for antibody discovery, cell line development, and synthetic biology. Prof. Wu is IEEE and Optical Society (OSA) Fellow. His work has been recognized by 2007 Paul F. Forman Engineering Excellence Award (OSA), 2016 IEEE Photonics Society William Streifer Scientific Achievement Award. and 2017 C.E.K. Mees Medal (OSA).

> IEEE Electron Devices Society with financial support from Robert Bosch LLC.

TECHNICAL PROGRAM INFORMATION

Oral Sessions

Oral sessions will be held in **Ballroom A**(0), with the Wednesday parallel concurrent sessions in Room **109/110** (2). See floor plan on page **3**.

Poster/Oral Sessions

The poster/oral format will consist of three (3) scheduled 10 minute, oral presentations which will be presented during each poster session on their assigned day in front of each poster starting at the designated times below. The remainder of the time should be used for questions & answers. The chimes will ring five minutes before the start of each presentation.

All poster papers are listed in this program by topic category with their assigned number starting on page **24**. See floor plan at the end of this program.

Session I	Session II
Sunday, January 19	Monday, January 20
13:30 - 15:30	13:45 – 15:45
Poster/Oral Presentation 1 – 14:00	Poster/Oral Presentation 1 – 14:15
Poster/Oral Presentation 2 – 14:30	Poster/Oral Presentation 2 – 14:45
Poster/Oral Presentation 3 – 15:00	Poster/Oral Presentation 3 – 15:15

Session III

Tuesday, January 21 13:10 – 15:10 Poster/Oral Presentation 1 – 13:40 Poster/Oral Presentation 2 – 14:10 Poster/Oral Presentation 3 – 14:40

Guide to Understanding Poster Numbering

Each poster is assigned a unique number which clearly indicates when and where the poster is presented.

Poster number: S-130

The first character (i.e. M) indicates the day of the Conference:

S = Sunday \mathbf{M} = Monday \mathbf{T} = Tuesday

The second character (i.e. 130) is the poster board position on the floor plan.

Poster Track/Classification

Bio & Medical MEMS

EMS Actuators & PowerMEMS

EMS Physical Sensors

Materials, Fabrication and Packaging for Generic MEMS & NEMS

Micro- & Nanofluidics

Optical, RF and Electromagnetics for MEMS

Technical Topics on MEMS Products

Industry Open Posters

See poster floor plan at the end of this program.

Outstanding Student Paper Award Finalists

Award Nominees are indicated with an * above the paper title in the program and on the poster board number.

	SATURDAY, JANUARY 18
12:00 – 19:00	Registration
	MEMS Industry Workshop Workshop Chair: Jason Weigold, <i>MEMStaff, Inc., USA</i>
	BALLROOM A
	Session 1 - Fabrication/Microtechnology
13:00	AN IDM PERSPECTIVE ON MEMS FOUNDRY Stefan Majoni Robert Bosch GmbH, GERMANY
13:15	CMOSSENSE® - COMBINING CMOS FOUNDRY SERVICES WITH MEMS APPLICATIONS Silvio Graf SENSIRION AG, SWITZERLAND
13:30	MICRODERMICS: UNLOCKING THE SKIN FOR BIOMEDICAL APPLICATIONS THROUGH MICRONEEDLES Boris Stoeber Microdermics Inc., CANADA
13:45	MEMS INDUSTRIALIZATION SURPRISES Sandy Vos NXP, USA
14:00	Networking Break
	Session 2 - Piezoelectrics/Ultrasonics
14:30	THE PIEZOELECTRIC ACTUATORS LANDSCAPE Laura Castoldi <i>ST Microelectronics, ITALY</i>
14:45	BRINGING MEMS ULTRASONICS TO CONSUMER ELECTRONICS Michelle Kiang

Chirp Microsystems, USA

- 15:00 IMPLEMENTATION OF SPUTTERED PZT IN HIGH RELIABILITY APPLICATIONS Niklas Svedin Silex, SWEDEN
- 15:15 SiP INTEGRATION OF MEMS TIMING SOLUTION FOR 5G AND IIOT Ernest Ting-Ta Yen Texas Instruments, USA
- 15:30 Networking Break

Session 3 - Devices and Applications

- 16:00 SEMICONDUCTOR SEQUENCING™ SENSOR TECHNOLOGY FOR CLINICAL DIAGNOSTIC APPLICATIONS James M. Bustillo ThermoFisher Scientific, USA
- 16:15 HIGH PERFORMANCE, SMALL FOOTPRINT MEMS INERTIAL SENSORS WITH SUPERIOR ROBUSTNESS Houri Johari-Galle TDK Invensense, USA
- 16:30 A PRODUCT INCUBATION JOURNEY: LARGE BUSINESS R&D TO START-UP COMMERCIALIZATION Chris Keimel Menlo Micro, USA
- 16:45 CAMERA-FREE EYE TRACKING MICROSYSTEMS FOR AR, VR, AND HEALTHCARE Neil Sarkar Adhawk Microsystems, CANADA
- 17:00 Wine & Cheese Welcome Reception

MicroMagFab proposes a technology to integrate high performance NdFeB permanent magnets into microsystems.

High rate sputtering is used to deposit thick (10 – 50 microns) NdFeB films.

Benefits: Fully integrated, Customized shapes and sizes, Batch fabrication, Resource efficient

Applications: μ-actuators, μ-generators (energy harvesters), μ-motors, μ-sensors

SUNDAY, JANUARY 19

Welcome Address

BALLROOM A

SUNDAY

08:00 MEMS 2020 Conference Chairs Karen Cheung, University of British Columbia, CANADA David Horsley, University of California, Davis, USA

 IEEE Fellows Recognition in the Field of MEMS/NEMS
 IEEE Electron Devices Society Robert Bosch Micro and Nano Electro Mechanical Systems Award

BALLROOM A

08:20 IEEE Electron Devices Society Robert Bosch Micro and Nano Electro Mechanical Systems Award Recipient Ming C. Wu University of California, Berkeley, USA

Plenary Speaker I

Session Chair:

David Horsley, University of California, Davis, USA

BALLROOM A

08:35 DNA FOR DIGITAL DATA STORAGE Bill Peck Twist Bioscience, USA

Session I – Biomedical MEMS

Session Chair:

Dong-Weon Lee, Chonnam National University, KOREA

BALLROOM A

- 09:20 DEVELOPMENT OF MAGNETICALLY DRIVEN MICROROBOTS FOR TARGETED CELL DELIVERY, AND THEIR CHARACTERIZATION IN *IN VITRO, EX VIVO* AND *IN VIVO* ENVIRONMENTS Sungwoong Jeon¹, Sun Hwa Park², Sung Won Kim², Jin-young Kim¹, and Hongsoo Choi¹ ¹Daegu Gyeongbuk Institute of Science and Technology (DGIST), KOREA and² Catholic University of Korea, KOREA
- 09:35 CONDUCTIVE LIQUID BANDAGE BASED ON NITROCELLULOSE AND AG PARTICLES FOR WOUND ISOLATION AND EVALUATION Yufeng Chen¹, Tongren Yang², Junshi Li¹, Yuanyu Huang², and Zhihong Li¹ ¹Peking University, CHINA and ²Beijing Institute of Technology, CHINA

09:50 AN ULTRA MINIATURIZED MEMS MICROBIOPSY TOOL FOR TRANS BLOOD VESSEL WALL BIOPSIES Mikael Sandell^{1,2}, Rikard Grankvist², Stefan Jonsson¹, Wouter M. van der Wijngaart¹, Göran Stemme¹, Staffan Holmin², and Niclas Roxhed¹ ¹KTH Royal Institute of Technology, SWEDEN and ²Karolinska Institutet, SWEDEN

10:05 AWARD NOMINEE* A DEGRADABLE ANTIBACTERIAL SKIN PATCH OF FLEXIBLE TERAHERTZ METAMATERIALS MADE FROM SILK PROTEINS Long Sun^{1,2}, Chi Gu¹, Tiger H. Tao^{1,2}, and Zhitao Zhou¹ ¹Chinese Academy of Sciences (CAS), CHINA and ²University of Chinese Academy of Sciences (UCAS), CHINA

10:20 Break and Exhibit Inspection

SUNDAY Program

Session II – Flexible Devices Session Chairs: Jongbaeg Kim, Yonsei University, KOREA Hiroaki Onoe, Keio University, JAPAN **BALLROOM A** 10:50 SENSORY-GLOVE-BASED HUMAN MACHINE INTERFACE FOR **AUGMENTED REALITY (AR) APPLICATIONS** Minglu Zhu¹, Zhongda Sun¹, Zixuan Zhang¹, Qiongfeng Shi¹, Tao Chen², Huicong Liu², and Chengkuo Lee¹ ¹National University of Singapore, SINGAPORE and ²Soochow University. CHINA ULTRA-SENSITIVE STRAIN SENSOR USING HIGH DENSITY 11:05 SELF-ALIGNED NANO-CRACKS Myung-Kun Chung, Jae-Young Yoo, Jae-Shin Lee, Min-Seung Jo, Kwang-Wook Choi, Su-Bon Kim, and Jun-Bo Yoon Korea Advanced Institute of Science and Technology (KAIST), KOREA MASSIVELY PARALLEL LIQUID METAL WIRING FOR SOFT 11:20 ELECTRONICS AND ROBOTICS Kaushal J. Sumaria and Tingyi "Leo" Liu University of Massachusetts, Amherst, USA A WEARABLE BRAILLE RECOGNITION SYSTEM BASED ON HIGH 11:35 DENSITY TACTILE SENSORS Chunpeng Jiang, Kunpeng Gao, Nan Zhao, Gencai Shen, Zhongke Mei, Zhenyu Song, Bin Yang, and Jingquan Liu Shanghai Jiao Tong University, CHINA

11:50 Lunch on Own and Exhibit Inspection

Poster/Oral Session I

BALLROOM B/C

- 13:30 Poster/Oral Session I Poster presentations are listed by topic category with their assigned number starting on page 24.
- 15:00 Break and Exhibit Inspection

Session III – Droplets

Session Chairs: Tianzhun Wu, Chinese Academy of Sciences, CHINA

Zhihong Li, University, CHINA

BALLROOM A

15:30 AWARD NOMINEE* ONE-STEP FABRICATION OF MULTI-FUNCTIONAL CORE-SHELL JANUS MICROPARTICLES FOR THERANOSTICS APPLICATION Mio Tsuchiya¹, Yuta Kurashina², Yun Jung Heo³, and Hiroaki Onoe¹ ¹Keio University, JAPAN, ²Tokyo Institute of Technology, JAPAN, and ³Kyung Hee University, KOREA

15:45 AWARD NOMINEE* SELF-CLEANING DROP FREE GLASS OPERATED BY ACOUSTIC ATOMIZATION/OSCILLATION FOR AUTONOMOUS DRIVING AND IOT TECHNOLOGY Seungmin Lee, Youngbin Hyun, Kang Young Lee, Jeongmin Lee, and Sang Kug Chung Myongji University, KOREA

	Session III – Droplets Continued
	BALLROOM A
16:00	AWARD NOMINEE* ACOUSTOFLUIDICS BASED ON ZnO/AL PLATE SURFACE ACOUSTIC WAVE DEVICES WITH ENHANCED PERFORMANCES Yong Wang ¹ , Ran Tao ² , Qian Zhang ¹ , Dongyang Chen ¹ , Lei Yang ¹ , Wei Huang ¹ , Jin Xie ¹ , and Yongqing Fu ² ¹ Zhejiang University, CHINA and ² University of Northumbria, UK
16:15	DRUG-LOADED MICROBEADS SANDWICHED BETWEEN NANOFIBER LAYERS FOR EXTENDED LINEAR RELEASE Sheng-Po Fang, Gloria J. Kim, Anuj Chohan, and Yong Kyu "YK" Yoon University of Florida, USA
16:30	DETECTION AND CONTROL OF BUBBLE ENTRAPMENT DURING THE RECOIL PHASE OF DROPLET IMPACT Thanh-Vinh Nguyen and Masaaki Ichiki National Institute of Advanced Industrial Science and Technology (AIST), JAPAN
	Session IV – Physical & Acoustic Sensors Session Chairs: Núria Barniol, Universitat Autonoma de Barcelona, SPAIN Yong-Kyu "YK" Yoon, University of Florida, USA
	BALLROOM A
16:45	A HIGH DYNAMIC RANGE AFM PROBE WITH COLLOCATED PIEZOELECTRIC TRANSDUCER PAIRS Mohammad Mahdavi, M. Bulut Coskun, Hazhir Mahmoodi Nasrabadi, and S.O. Reza Moheimani University of Texas, Dallas, USA
17:00	AWARD NOMINEE* MONOLITHIC INTEGRATION OF PRESSURE/HUMIDITY/TEMPERATURE SENSORS FOR CMOS-MEMS ENVIRONMENTAL SENSING HUB WITH STRUCTURE DESIGNS FOR PERFORMANCES ENHANCEMENT Yung-Chian Lin, Ping-Hsiu Hong, Sheng-Kai Yeh, Cheng-Chun Chang, and Weileun Fang National Tsing Hua University, TAIWAN
17:15	MEMS FOCUSED ULTRASONIC TRANSDUCER WITH AIR-CAVITY LENS BASED ON POLYDIMETHYLSILOXANE (PDMS) MEMBRANE Yongkui Tang, Song Liu, and Eun Sok Kim University of Southern California, USA
17:30	SUBCELLULAR IMAGING DURING SINGLE CELL MECHANICAL CHARACTERIZATION Deniz Pekin ¹ , Grégoire Perret ^{2,3} , Quentin Rezard ^{2,4} , Jean Claude Gerbedoen ^{2,3} , Samuel Meignan ^{2,4,5} , Dominique Collard ^{2,3} , Chann Lagadec ^{2,4} , and Mehmet C. Tarhan ^{2,4} 'INSERM, FRANCE, ² CNRS, FRANCE, ³ LIMMS/CNRS-IIS, FRANCE, ⁴ University of Lille, FRANCE, and ⁵ Centre Oscar Lambert, FRANCE

17:45 Adjourn for the Day

Sensors (ISSN 1424-8220; CODEN: SENSC9) is the leading international peer-reviewed open access journal on the science and technology of sensors and biosensors.

20 Volumes (2001)

7255+ Articles have been cited 10 times or more (h-10 Index)

Author Benefits

23000+

Articles published so far

40days From submission to publication

- 3 Open Access Unlimited and free access for readers
- C No Copyright Constraints Retain copyright of your work and free use of your article
- (F) Impact Factor 3.031 (2018 Journal Citation Reports®)
- & Thorough Peer-Review
- A Coverage by Leading Indexing Services SCIE, EI, Scopus
- No Space Constraints, No Extra Space or Color Charges

8th International Symposium on Sensor Science (I3S 2020) 03 – 05 June 2020, Dresden, Germany Conference Chairs: Prof. Dr. Gianaurelio Cuniberti and Dr. Larysa Baraban

IMPACT

FACTOR 3.031

Jun-E	Plenary Speaker II Session Chair: 3o Yoon, Korea Advanced Institute of Science and Technology (KAIST), KOREA
	BALLROOM A
08:00	ELECTRONIC SKINS FOR ROBOTICS AND WEARABLES Takao Someya ^{1,2} , Tomoyuki Yokota ¹ , Sunghoon Lee ¹ , and Kenjiro Fukuda ² ¹ University of Tokyo, JAPAN and ² RIKEN, JAPAN
	Session V – Wearable Devices
Niel	Session Chairs: s Quack, École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND Shoji Takeuchi, University of Tokyo, JAPAN
	BALLROOM A
08:45	A SKIN-MOUNTABLE BACTERIA-POWERED BATTERY SYSTEM FOR SELF-POWERED MEDICAL DEVICES Maedeh Mohammadifar, Mehdi Tahernia, Jihyun Yang, Ahyeon Koh, and Seokheun Choi State University of New York, Binghamton, USA
09:00	AWARD NOMINEE* TRANSIENT EPIDERMAL ELECTRONICS FOR LEARNING THE PHYSIOLOGICAL SIGNATURES Yujia Zhang ¹ and Tiger H. Tao ^{1,2,3,4} ¹ Chinese Academy of Sciences (CAS), CHINA, ² ShanghaiTech University, CHINA, ³ Zhangjiang Laboratory, CHINA, and ⁴ Shanghai Brain/AI Center, CHINA
09:15	SMART TRIBOELECTRIC SOCKS FOR ENABLING ARTIFICIAL INTELLIGENCE OF THINGS (AIOT) BASED SMART HOME AND HEALTHCARE Zixuan Zhang, Tianyiyi He, Minglu Zhu, Qiongfeng Shi, and Chengkuo Lee National University of Singapore, SINGAPORE
09:30	SIMULTANEOUS MEASUREMENT OF PULSE WAVE AND RESPIRATION USING A SINGLE TUBE-SHAPED MEMS-BASED PRESSURE SENSOR Thanh-Vinh Nguyen and Masaaki Ichiki National Institute of Advanced Industrial Science and Technology (AIST), JAPAN
09:45	Break and Exhibit Inspection
	Session VI – Biosensors Session Chairs: Honglong Chang, Northwestern Polytechnical University, CHINA Matthias Meier, Helmholtz Zentrum Munich, GERMANY
	BALLROOM A
10:15	IN-PLANE MODE RESONANT CANTILEVER SENSOR TO DETECT KINETIC/THERMODYNAMIC PARAMETERS FOR APTAMER-LIGAND BINDING Xuefeng Wang ¹ , Yarong Cheng ² , Shengran Cai ³ , Pengcheng Xu ¹ , Ying Chen ¹ , Haitao Yu ¹ , and Xinxin Li ¹ ¹ Chinese Academy of Sciences (CAS), CHINA, ² Shanghai Normal University, CHINA, and ³ University of Chinese Academy of Sciences (UCAS), CHINA

	Session VI – Biosensors
	Continued
	BALLROOM A
10:30	ODORANT SENSOR USING OLFACTORY RECEPTOR RECONSTITUTED IN A LIPID BILAYER MEMBRANE WITH GAS FLOW SYSTEM Tetsuya Yamada ¹ , Hirotaka Sugiura ¹ , Hisatoshi Mimura ¹ , Koki Kamiya ¹ , Toshihisa Osaki ¹ , and Shoji Takeuchi ^{1,2} ¹ Kanagawa Institute of Industrial Science and Technology, JAPAN and ² University of Tokyo, JAPAN
10:45	BIO-INSPIRED SUPERHYDROPHILIC MICROPATTERNS FOR DETECTION OF TRACE MOLECULES IN FOG Ruirui Li ^{1,2} , Yudong Yang ² , Shuai Yang ^{1,2} , Bo Gui ² , Haiyang Mao ^{2,3} , Jijun Xiong ¹ , Kewen Long ⁴ , and Dapeng Chen ^{2,3} ¹ North University of China, CHINA, ² Chinese Academy of Sciences (CAS), CHINA, ³ Wuxi Internet of Things Innovation Center Co. Ltd., and ⁴ Foshan Chuandong Magnetic Electronic Co., Ltd.
11:00	HIGH-PERFORMANCE PAPER-BASED FLUIDIC CASSETTE FOR MASS SPECTROMETRY ANALYZING CAFFEINE AND NICOTINE METABOLITES Yi-Chieh Li, Ming-Hsu Cheng and Che-Hsin Lin National Sun Yat-sen University, TAIWAN
11:15	BIOINTEGRATED SUBTRACTIVE MICROFABRICATION BY HYDRODYNAMIC FLOW CONFINEMENT Daniel Widerker ^{1,2} , Federico Paratore ^{1,2} , Govind Kaigala ² , and Moran Bercovici ¹ ¹ Technion, ISRAEL and ² IBM Research-Zurich, SWITZERLAND
	MEMS 2021 Announcement
	BALLROOM A
11:30	MEMS 2021 Announcement Núria Barniol, <i>Universitat Autonoma de Barcelona, SPAIN</i> Franz Lärmer <i>, Bosch, GmbH, GERMANY</i>
1:45	Lunch on Own and Exhibit Inspection

Poster/Oral Session II

BALLROOM B/C

- 13:45 Poster/Oral Session II Poster presentations are listed by topic category with their assigned number starting on page 24.
- 15:15 Break and Exhibit Inspection

Session VII – Switches & Resonators

Session Chairs:

Cristian Cassella, Northeastern University, USA Shinichiro Tezuka, Yokogawa Electric Corporation, JAPAN

BALLROOM A

15:45 A 125-KHZ CMOS-MEMS RESOSWITCH EMBEDDED ZERO QUIESCENT POWER OOK/FSK RECEIVER Chun-Pu Tsai, Yen-Yu Liao, and Wei-Chang Li National Taiwan University, TAIWAN

16:00 AWARD NOMINEE* HOLD-BIAS FREE MEM POWER GATING FOR ZERO STANDBY ENERGY DISSIPATION IN CMOS ICS Dhairya Singh Arya, Sushil Kumar, and Pushpapraj Singh Indian Institute of Technology, Delhi, INDIA

MONDAY

	Session VII – Switches & Resonators Continued
	BALLROOM A
16:15	4 W DUAL-CONTACT MATERIAL MEMS RELAY WITH A CONTACT FORCE MAXIMIZING STRUCTURE Su-Bon Kim, Yong-Hoon Yoon, Yong-Bok Lee, Kwang-Wook Choi, Min-Seung Jo, Hyun-Woo Min, and Jun-Bo Yoon Korea Advanced Institute of Science and Technology (KAIST), KOREA
16:30	DESIGN AND IMPLEMENTATION OF A NOVEL SKULL VIBRATION SENSING MODULE FOR BONE CONDUCTION MICROPHONE Bo-Cheng You ^{1,2} , Sung-Cheng Lo ^{1,3} , Chun-Kai Chan ³ , Hsien-Lung Ho ³ , Shih-Chia Chiu ³ , Guan-Hong Hsieh ² , and Weileun Fang ¹ ¹ National Tsing Hua University, TAIWAN, ² 1MORE ShenZhen Acoustic Technology Co., Ltd, CHINA, and ³ Gettop Acoustic Co., Ltd, CHINA
	Session VIII – Microfluidics
	Session Chairs: Mehmet Cagatay Tarhan, <i>IEMN, FRANCE</i> Arum Han, <i>Texas A&M University, USA</i>
	BALLROOM A
16:45	ECM-BASED GRADIENT GENERATOR FOR TUNABLE SURFACE ENVIRONMENT BY INTERSTITIAL FLOW Azusa Shimizu ¹ , Wei H. Goh ² , Rahul Karyappa ² , Michinao Hashimoto ² , and Hiroaki Onoe ¹ ¹ Keio University, JAPAN and ² Singapore University of Technology and Design, SINGAPORE
17:00	ON-DEMAND PHOTOTHERMAL BAR-CHART MICROFLUIDIC PLATFORM USING ON-CHIP NANOMATERIAL-MEDIATED PHOTOTHERMAL EFFECT AS THE MICROFLUIDIC DRIVING FORCE Wan Zhou, Guanglei Fu, and Xiujun Li University of Texas, El Paso, USA
17:15	FABRICATION OF HAND-DRIVEN COAXIAL LAMINAR FLOW DEVICES Haruka Oda and Shoji Takeuchi University of Tokyo, JAPAN
17:30	A 3D NANOPRINTED NORMALLY CLOSED MICROFLUIDIC TRANSISTOR Abdullah T. Alsharhan, Anthony J. Stair, Ryan R. Utz, Andrew C. Lamont, Michael A. Restaino, Ruben Acevedo, and Ryan D. Sochol <i>University of Maryland, USA</i>
17:45	AWARD NOMINEE* HIGH-SPEED AND HIGH-RESOLUTION ON-CHIP PUMPING UTILIZING ASYMMETRIC FLOW RESISTORS Makoto Saito, Yusuke Kasai, Hiroki Kumon, Shinya Sakuma, and Fumihito Arai Nagoya University, JAPAN
18:00	Adjourn for the Day

16

08:00

08:45

TUESDAY PROGRAM

Session Chair: Karen Cheung, University of British Columbia, CANADA **BALLROOM A** MEMS FOR UNLOCKING THE SECRETS OF THE NERVOUS SYSTEM Ellis Meng University of Southern California, USA **Invited Speaker I Session Chair:** Regina Luttge, Eindhoven University of Technology, NETHERLANDS **BALLROOM A** MICROFLUIDIC TOOLS FOR SINGLE-CELL WOUND REPAIR STUDIES Luke R. Blauch, Kevin Zhang, and Sindy KY Tang Stanford University. USA Invited Speaker II **Session Chair:** Regina Luttge, Eindhoven University of Technology, NETHERLANDS

Plenary Speaker III

BALLROOM A

09:05 ONE-STEP RT-PCR FOR DETECTION OF MICRORNAS IN EXOSOMES USING DROPLET MICROFLUIDICS Binbin Cui, Chunchen Liu, and Shuhuai Yao Hong Kong University of Science and Technology, HONG KONG

Panel Discussion

Panel Moderator:

Ellis Meng, University of Southern California, USA

BALLROOM A

- 09:25 Panel Discussion with Catherine Klapperich, Sindy KY Tang, and Shuhuai Yao
- 10:05 Break and Exhibit Inspection

Session IXa – Infrared Detectors

Session Chair:

Shuji Tanaka, Tohoku University, JAPAN

BALLROOM A

10:35 INVITED SPEAKER LOW-COST LWIR-BAND CMOS INFRARED (CIR) MICROBOLOMETERS FOR HIGH VOLUME APPLICATIONS Tayfun Akin Mikrosens Elektronik San. ve Tic. A.Ş., TURKEY

11:05 SLOW-LIGHT-ENHANCED WAVEGUIDE-INTEGRATED BLACK PHOSPHORUS MID-INFRARED PHOTODETECTOR Yiming Ma^{1,2}, Bowei Dong¹, Jingxuan Wei¹, Yuhua Chang¹, Weixin Liu¹, and Chengkuo Lee^{1,2} ¹National University of Singapore, SINGAPORE and ²NUS Suzhou Research Institute (NUSRI), CHINA

Session IXa – Infrared Detectors	
Continued	
	BALLROOM A
11:20	MONOLITHIC INTEGRATION OF PLASMONIC META-MATERIAL ABSORBER WITH CMOS-MEMS INFRARED SENSOR FOR RESPONSIVITY ENHANCEMENT AND HUMAN DETECTION APPLICATION Pen-Sheng Lin ¹ , Ting-Wei Shen ² , Kai-Chieh Chang ³ , and Weileun Fang ¹ ¹ National Tsing Hua University, TAIWAN, ² Taiwan Semiconductor Manufacturing Company (TSMC) Ltd., TAIWAN, and ³ Asia Pacific Microsystem, Inc., TAIWAN
11:35	UNCOOLED SixGer01-X-Y MICROBOLOMETER STACK FOR LWIR DETECTION Amjed Abdullah ¹ , Tao Liu ² , Edward Kinzel ² , and Mahmoud Almasri ¹ ¹ University of Missouri, Columbia, USA, ² University of Notre Dame, USA
	Session IXb – Advanced Biomaterials Session Chair: Boris Stoeber, University of British Columbia, CANADA
	R00M 109/110
10:35	INVITED SPEAKER SMART MATERIALS FOR BIOELECTRONICS PLATFORMS Francesca Santaro Italian Institute of Technology, ITALY
11:05	A STRETCHABLE PRESSURE AND STRAIN SENSOR USING CONDUCTIVE SILK HYDROGELS Shan Zhang ^{1,2} , Zhitao Zhou ¹ , and Tiger H. Tao ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA
11:20	PAAM/PEDOT:PSS HYDROGEL BASED HYBRID SENSOR FOR SIMULTANEOUS DETECTION OF PRESSURE AND TEMPERATURE Seokgyu Ko, Hyosang Yoon, Ashok Chhetry, and Jaeyoung Park Kwangwoon University, KOREA
11:35	JELLYFISH-LIKE HYDROGELS FOR TRANSPARENT, SELF-HEALING AND ULTRA-STRECHABILE SENSORS AND ACTUATORS Yu Long, Peisheng He, Fanping Sui, and Liwei Lin University of California, Berkeley, USA
11:50	Lunch on Own and Exhibit Inspection
	Poster/Oral Session III
	BALLROOM B/C
13:10	Poster/Oral Session III Poster presentations are listed by topic category with their assigned number starting on page 24 .

14:40 Break and Exhibit Inspection

Session Xa – Resonant Transducers

Session Chair:

Dana Weinstein, Purdue University, USA

BALLROOM A

15:10 INVITED SPEAKER CMOS-MEMS RESONANT TRANSDUCERS FOR FREQUENCY CONTROL AND SENSING Sheng-Shian Li and Shyam Trivedi National Tsing Hua University, TAIWAN

- 15:40 AWARD NOMINEE* A MICRO RESONANT ELECTROMETER WITH SINGLE-ELECTRON CHARGE RESOLUTION AT ROOM TEMPERATURE Dongyang Chen^{1,2}, Hemin Zhang², Jiangkun Sun^{2,3}, Milind Pandit², Guillermo Sobreviela², Yong Wang¹, Qian Zhang¹, Ashwin Seshia², and Jin Xie¹ ¹Zhejiang University, CHINA, ²University of Cambridge, UK, and ³National University of Defense Technology, CHINA
- 15:55 BETA GALLIUM OXIDE (β-Ga₂O₃) VIBRATING CHANNEL TRANSISTOR Xu-Qian Zheng, Jaesung Lee, and Philip X.-L. Feng University of Florida, USA
- 16:10 A MODE-LOCALIZED MAGNETOMETER WITH RESOLUTION OF 6.9NT//Hz WITHIN THE RANGE OF 100 MT Wenmu Li, Fang Ye, Bing Ruan, Yongcun Hao, and Honglong Chang Northwestern Polytechnical University. CHINA

Session Xb – Gas Sensors

Session Chair: Hanseup Kim, University of Utah, USA

ROOM 109/110

- 15:10 INVITED SPEAKER MEMS GAS SENSORS - FROM NANOMATERIALS TO MICROELECTRODES Changhui Zhao, Huimin Gong, Gaoqiang Niu, and Fei Wang Southern University of Science and Technology, CHINA
- 15:40 AWARD NOMINEE* AN INTEGRATED CMOS MEMS GAS FLOW SENSOR WITH DETECTION LIMIT TOWARDS MICROMETER PER SECOND Wei Xu¹, Xiaoyi Wang², Xiaojin Zhao¹, Zongqin Ke¹, and Yi-Kuen Lee² ¹Shenzhen University, CHINA and ²Hong Kong University of Science and Technology, CHINA
- 15:55 GAS DETECTION BY NEAR-INFRARED SPECTROSCOPY BASED ON A SURFACE PLASMON RESONANCE PHOTODETECTOR Yosuke Yamamoto¹, Masaaki Oshita¹, Masahiro Fukasawa¹, Shiro Saito², and Tetsuo Kan¹ ¹University of Electro-Communications, JAPAN and ²Aisin Cosmos R&D Co., Ltd., JAPAN
- 16:10 OPTIMIZATION OF NANO-COPPER AS H₂S GAS SENSING MATERIAL BY QUANTITATIVELY EVALUATING THERMODYNAMIC ENTHALPY WITH RESONANT MICROCANTILEVER Ming Li^{1,2}, Pengcheng Xu^{1,2}, Haitao Yu^{1,2}, Xueqing Wang^{1,2}, Ying Chen^{1,2}, and Xinxin Li^{1,2} ¹Chinese Academy of Sciences (CAS), CHINA and

²University of Chinese Academy of Sciences (UCAS), CHINA

	Session XIa – Resonant NEMS & MEMS	
	Raafat Mansour, University of Waterloo, CANADA	
	BALLROOM A	
16:25	INVITED SPEAKER RESONANT NANOELECTROMECHANICAL SYSTEMS (NEMS): PROGRESS AND EMERGING FRONTIERS Philip XL. Feng University of Florida, USA	
16:55	MONOLITHIC MEMS FILTER BANKS ON RFSOI FRONT-END MODULE Humberto Campanella ^{1,2} , You Qian ¹ , Christian O. Romero ¹ , Joan Giner ¹ , and Rakesh Kumar ¹ ¹ Global Foundries, SINGAPORE and ² Tyndall National Institute, IRELAND	
17:10	SINGLE-DIGIT-NANOMETER CAPACITIVE-GAP TRANSDUCED MICROMECHANICAL DISK RESONATORS Alper Ozgurluk, Kieran Peleaux, and Clark TC. Nguyen University of California, Berkeley, USA	
17:25	CAPACITIVE LAMÉ MODE RESONATORS IN 65 µM-THICK MONOCRYSTALLINE SILICON CARBIDE WITH Q-FACTORS EXCEEDING 20 MILLION Jeremy Yang, Benoit Hamelin, and Farrokh Ayazi Georgia Institute of Technology, USA	
17:40	AN EPI-SEAL ENCAPSULATED FRANKLIN OSCILLATOR SUSTAINING MORE THAN 200,000,000 ELECTRIC SWITCHING CYCLES Danny A. Kassie', lan B. Flader ² , Shai Shmulevich ¹ , Hyun-Keun Kwon ² , Thomas W. Kenny ² , and David Elata ¹ ¹ Technion - Israel Institute of Technology, ISRAEL and ² Stanford University, USA	
Session XIb - Flexible Ricelectronics & Ricmaterials		
Se	ession XIb – Flexible Bioelectronics & Biomaterials	
Se	ession XIb – Flexible Bioelectronics & Biomaterials Session Chair: Bonnie Gray, Simon Fraser University, CANADA	
Se	ession XIb – Flexible Bioelectronics & Biomaterials Session Chair: Bonnie Gray, <i>Simon Fraser University, CANADA</i> ROOM 109/110	
Se 16:25	Assion XIb – Flexible Bioelectronics & Biomaterials Session Chair: Bonnie Gray, Simon Fraser University, CANADA ROOM 109/110 INVITED SPEAKER ORGANIC CONDUCTING POLYMERS FOR BIOELECTRONICS Fabio Cicoira Polytechnique Montréal, CANADA	
Se 16:25 16:55	Assion XIb – Flexible Bioelectronics & Biomaterials Session Chair: Bonnie Gray, Simon Fraser University, CANADA ROOM 109/110 INVITED SPEAKER ORGANIC CONDUCTING POLYMERS FOR BIOELECTRONICS Fabio Cicoira Polytechnique Montréal, CANADA OUT-OF-PLANE FLEXIBLE ELECTRONIC WHISKER ARRAY Seiji Wakabayashi ¹ , Takafumi Yamaguchi ¹ , Takayuki Arie ¹ , Seiji Wakabayashi ¹ , Takafumi Yamaguchi ¹ , Takayuki Arie ¹ , Seiji Akita ¹ , and Kuniharu Takel ^{1,2}	
Se 16:25 16:55 17:10	Avard Nominee* Seiji Wakabayashi', Takafumi Yamaguchi', Takayuki Arie', Seiji Wakabayashi', Takayuki Arie', Seiji Wakaba	
Se 16:25 16:55 17:10 17:25	 Pession XIb – Flexible Bioelectronics & Biomaterials Session Chair: Bonnie Gray, Simon Fraser University, CANADA ROOM 109/110 INVITED SPEAKER ORGANIC CONDUCTING POLYMERS FOR BIOELECTRONICS Fabio Cicoira Polytechnique Montréal, CANADA OUT-OF-PLANE FLEXIBLE ELECTRONIC WHISKER ARRAY Seiji Wakabayashi', Takafumi Yamaguchi', Takayuki Arie', Seiji Akita', and Kuniharu Takei'.² ¹Osaka Prefecture University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN AWARD NOMINEE* SELF-HEALING, HIGHLY-STRETCHABLE, TRANSPARENT, AND ION-CONDUCTING HYDROGEL ELECTRONICS Peisheng He, Yu Long, Renxiao Xu, Guangchen Lan, and Liwei Lin University of California, Berkeley, USA LOCALLY BENDABLE STIMULI-RESPONSIVE HYDROGEL ACTUATOR WITH AXIALLY PATTERNED FUNCTIONAL MATERIALS Nobuki Takeuchi', Shunsuke Nakajima', Ryuji Kawano², Yutaka Hori', and Hiroaki Once' ' Keio University, JAPAN and ² Tokyo University of Agriculture and Technology, JAPAN 	
Se 16:25 16:55 17:10 17:25	Sistion XIb – Flexible Bioelectronics & Biomaterials Session Chair: Bonnie Gray, Simon Fraser University, CANADA EDU 109/110 NUTED SPEAKER MGGANIC CONDUCTING POLYMERS FOR BIOELECTRONICS Fabio Cicoira Polytechnique Montréal, CANADA Otto-F-PLANE FLEXIBLE ELECTRONIC WHISKER ARRAY Bolytechnique Montréal, CANADA Otto-F-PLANE FLEXIBLE ELECTRONIC VHISKER ARRAY Seiji Wakabayashi', Takafumi Yamaguchi', Takayuki Arie', Seiji Wakabayashi', Takafumi Yamaguchi', Takayuki Arie', Seiji Wakabayashi', Takafumi Yamaguchi', Takayuki Arie', Seiji Akita', and Kuniharu Takei'. ² ¹ Japan Science and Technology Agency (JST), JAPAN ² Japan Science and Technology Agency (JST), JAPAN Poster Prefecture University, JAPAN and ² Japan Science and Technology Agency (JST), JAPAN Poster Prefecture University, JAPAN and ² Japan Science and Technology Agency (JST), JAPAN Poster Prefecture University, JAPAN and ² Joheng He, Yu Long, Renxiao Xu, Guangchen Lan, and Liwei Lin Joiversity of California, Berkeley, USA Dokuki Takeuchi', Shunsuke Nakajima', Ryuji Kawano ² , Yuaka Hori', and Hirosuko Inoe' ¹ Vator Horversity, JAPAN and ² Tokyo University of Agriculture and Technology, JAPAN	

Session XIb – Flexible Bioelectronics & Biomaterials Continued

ROOM 109/110

17:40 SOFT AND FLEXIBLE 3D-STRUCTURED DEVICE WITH CRACK-FREE METAL PATTERNS

Hyunmin Moon and Sohee Kim Daegu Gyeongbuk Institute of Science and Technology (DGIST), KOREA

17:55 Adjourn for the Day

19:00 – Z2:00 Tuesday Evening Event at the Vancouver Aquarium

CALL FOR PAPERS

WEDNESDAY PROGRAM

Plenary Speaker IV Session Chair: Ryan Sochol, University of Maryland, College Park, USA **BALLROOM A** 08:00 **3D LASER NANOPRINTING** Martin Wegener Karlsruhe Institute of Technology (KIT), GERMANY Session XII – Inertial Sensors Session Chairs: Nicole Kerness, QST Solutions, USA Valentina Zega, Politecnico di Milano, ITALY **BALLROOM A** 08:45 INVESTIGATING LONG-TERM STABILITY OF WIDE BANDWIDTH SURFACE ACOUSTIC WAVES GYROSCOPES USING A MONOLITHICALLY INTEGRATED MICRO-OVEN Ashraf Mahmoud, Tamal Mukherjee, and Gianluca Piazza Carnegie Mellon University. USA 09:00 A CORIOLIS FORCE COMPENSATED MICRO THERMAL CONVECTIVE ACCELEROMETER WITH LOW CROSSING EFFECT Xiaoyi Wang¹, Xu Zhao¹, Huahuang Luo¹, Wei Xu², and Yi-Kuen Lee¹ ¹Hong Kong University of Science and Technology, HONG KONG and ²Shenzhen University, CHINA MODELING AND FIRST CHARACTERIZATION OF BROAD-SPECTRUM 09:15 VIBRATION REJECTION OF FREQUENCY MODULATED GYROSCOPES Marco Bestetti, Valentina Zega, and Giacomo Langfelder Politecnico di Milano, ITALY 09:30 A <100 PPB/K FREQUENCY-MATCHING TEMPERATURE STABILITY MEMS RATE INTEGRATING GYROSCOPE ENABLED BY DONUT-MASS STRUCTURE Shiori Kaji¹, Ryunosuke Gando¹, Kei Masunishi¹, Etsuji Ogawa¹, Fumito Miyazaki¹, Hiroki Hiraga¹, Yasushi Tomizawa¹, and Hideki Shibata^{1,2} ¹Toshiba Corporation, JAPAN and ²Device & System Platform Development Center Co., Ltd., JAPAN 09:45 Break Session XIII – Power MEMS Session Chairs: Hanna Cho, Ohio State University, USA David Elata, Technion - Israel Institute of Technology, ISRAEL **BALLROOM A** SELF-POWERED WIRELESS IOT SENSOR BASED ON 10:15 TRIBOELECTRIC TEXTILE Tianyiyi He¹, Feng Wen¹, Hao Wang¹, Qiongfeng Shi¹, Zhongda Sun¹, Zixuan Zhang¹, Ting Zhang², and Chengkuo Lee¹ ¹National University of Singapore, SINGAPORE and ²Chinese Academy of Sciences (CAS), CHINA A PLANAR ARCHITECTURE WITH DUAL-NONLINEARITY 10:30 FOR BANDWIDTH EXTENSION OF A MULTI-MODAL ENERGY HARVESTER Kai Wang, Xiufeng Shao, Xuhan Dai, Zhuoqing Yang, Guifu Ding, and Xiaolin Zhao Shanghai Jiao Tong University, CHINA

	Session XIII – Power MEMS Continued
	BALLROOM A
10:45	SILICON-CHIP BASED ELECTROMAGNETIC VIBRATION ENERGY HARVESTERS RAPIDLY FABRICATED BY WAFER-LEVEL MOLTEN METAL MICRO-CASTING TECHNIQUE Ruofeng Han ¹ , Nianying Wang ¹ , Dacheng Xu ² , Jiebin Gu ¹ , and Xinxin Li ¹ ¹ Chinese Academy of Sciences (CAS), CHINA and ² Soochow University, CHINA
	Session XIV – Fabrication & Materials Session Chairs: Anu Kärkkäinen, VTT, FINLAND Frank Niklaus, KTH Royal Institute of Technology, SWEDEN
	BALLROOM A
11:00	FABRICATION OF SINGLE-CRYSTAL SILICON NANOSLITS WITH FEATURE SIZES DOWN TO 4 NM AND HIGH LENGTH-WIDTH RATIOS Li Ye, Hao Hong, and Zewen Liu Tsinghua University, CHINA
11:15	BROADBAND ANTIREFLECTIVE QUARTZ GLASSES WITH DOUBLE-SIDE NANOCONE FORESTS Yudong Yang ¹ , Haiyang Mao ^{1,3} , Jin Li ² , Meng Shi ¹ , Kewen Long ⁴ , and Dapeng Chen ^{1,3} ¹ Chinese Academy of Sciences (CAS), CHINA, ² Suzhou Research Materials Microtech Co., Ltd, CHINA, ³ Wuxi Internet of Things Innovation Center Co. Ltd., CHINA, and ⁴ Foshan Chuandong Magnetic Electronics, CHINA
11:30	HIGHLY TRANSPARENT POROUS POLYDIMETHYLSILOXANE WITH MICRO-SIZE PORES USING WATER AND ISOPROPANOL MIXTURE Yeunjun Kwak, Eunhwan Jo, Yunsung Kang, and Jongbaeg Kim Yonsei University, KOREA
11:45	MEMS STICTION SUPPRESSION USING LOW-STRESS

CAMPHOR SUBLIMATION Rugved Likhite, Aishwaryadev Banerjee, Chayanjit Ghosh, Apratim Majumder, Mohit Karkhanis, Hanseup Kim, and Carlos H. Mastrangelo University of Utah, USA

Award Ceremony

BALLROOM A

- 12:00 Award Ceremony and Final Remarks
- 12:30 Conference Adjourns

SUNDAY

POSTER/ORAL PRESENTATIONS

BALLROOM B/C MONDAY 13:45 - 15:45

13:30 – 15:30

TUESDAY

13:10 - 15:10

TRACK/CLASSIFICATION

Bio & Medical MEMS

EMS Actuators & PowerMEMS

EMS Physical Sensors

Materials, Fabrication and Packaging for Generic MEMS & NEMS

Micro- & Nanofluidics

Optical, RF and Electromagnetics for MEMS

Technical Topics on MEMS Products

Industry Open Posters

See poster floor plan at the end of this program.

Bio and Medical MEMS

Biosensors and Bioreactors

S-001 A SELECTIVE ELECTROCHEMICAL DOPAMINE SENSOR BASED ON SILOXENE NANOSHEET Rajendran Ramachandran, Minzhang Li, Chengjie Ge, Zong Xiang Xu, and Fei Wang

Southern University of Science and Technology, CHINA

- M-002 CMOS ION SENSITIVE FIELD EFFECT TRANSISTORS FOR DETECTION OF DNA HYBRIDIZATION UNDER DEBYE SCREENING EFFECT Chieh Lee and Michael S.-C. Lu National Tsing Hua University, TAIWAN
- T-003 CHARACTERIZING ELECTROGENIC CAPABILITIES OF HUMAN GUT MICROBES Mehdi Tahernia, Yang Gao, Maedeh Mohammadifar, Melissa R. Oefelein, Laura C. Cook, and Seokheun Choi State University of New York, Binghamton, USA
- S-004 IMPEDIMETRIC PLANT BIOSENSOR BASED ON MINIMALLY INVASIVE AND FLEXIBLE MICRONEEDLE ELECTRODES Abdullah Bukhamsin, Khalil Moussi, Niketan Patel, Alex Przybysz, Yajun Wang, Simon Krattinger, and Jürgen Kosel King Abdullah University of Science and Technology (KAUST), SAUDI ARABIA
- M-005 NANOPIN A MEMS BASED SENSOR FOR THE ANALYSIS OF SINGLE CELL MECHANICAL PROPERTIES Momoko Kumemura¹, Lili C. Kudo², Zhongcai Ma², and Stanislav L. Karsten² ¹Kyushu Institute of Technology, JAPAN and ²NeuroInDx. Inc., USA
- T-006 SIMULTANEOUS QUANTIFICATION AND IDENTIFICATION OF PROTEIN BY METAMATERIAL PERFECT ABSORBER Dongxiao Li¹, Hong Zhou¹, Xindan Hui¹, Donglin Hu¹, Cheng Yang², Xin Chen¹, Ming Chen², and Xiaojing Mu¹ ¹Chongqing University, CHINA and ²Third Military Medical University, CHINA
- S-007 SURFACE-ENHANCED INFRARED ABSORPTION-BASED BIOSENSOR AND ITS APPLICATION TO DNA IDENTIFICATION Xindan Hui¹, Hong Zhou¹, Dongxiao Li¹, Donglin Hu¹, Cheng Yang², Hongzhi Pan¹, Ming Chen², and Xiaojing Mu¹ ¹Chongqing University, CHINA and ²Third Military Medical University, CHINA

Bio and Medical MEMS	
	Manufacturing for Bio- & Medical MEMS & Microfluidics
M-008	AWARD NOMINEE* 3D HYDROGEL MANUFACTURING EMPLOYING SELF-FOCUSING DURING PHOTO-CURING PROCESS Gayeong Lee ¹ , Hidetoshi Takahashi ² , Tetsuo Kan ³ , Jieun Kim ¹ , Nilsu Donmez ¹ , Jihoon Park ¹ , Dongwook Kim ¹ , Sanghoon Ka ¹ , Misong Nam ¹ , Donggi Lim ¹ , and Yun Jung Heo ¹ ¹ Kyung Hee University, KOREA, ² Keio University, JAPAN, and ³ University of Electro-Communications, JAPAN
T-009	LOCALLY-PATTERNED PARYLENE MEMBRANE ENABLES ELECTRICAL RESISTANCE MEASUREMENT FOR A CELLULAR BARRIER CONSISTING OF < 100 CELLS Takumi Yamada, Minghao Nie, Ai Shima, Yuya Morimoto, and Shoji Takeuchi University of Tokyo, JAPAN
S-010	PRECISE MANUFACTURING AND ASSEMBLY OF 3D METAL-ORGANIC FRAMEWORKS USING NATURAL PROTEIN TEMPLATES Jianjuan Jiang ¹ and Tiger H. Tao ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA
M-011	PROGRAMMABLE DEGRADATION OF TRANSIENT SOLUBLE SILK BASED OPTICAL DEVICES VIA THERMAL NANOIMPRINTING Jianjuan Jiang ¹ , Zhitao Zhou ^{1,2} , Yanghong Zhang ^{1,2} , and Tiger H. Tao ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA
T-012	STRETCHABLE AND PERFUSABLE MICROFLUIDIC DEVICE FOR CELL BARRIER MODEL Ryosuke Suzuki, Yuya Morimoto, Ai Shima, and Shoji Takeuchi University of Tokyo, JAPAN
S-013	WEARABLE MULTI VITAL MONITOR FOR NEWBORNS Go Inamori ¹ , Yutaka Isoda ¹ , Umihiro Kamoto ¹ , Azusa Uozumi ² , Shuichi Ito ² , and Hiroki Ota ¹ ¹ Yokohama National University, JAPAN and ² Yokohama City University, JAPAN
	Bio and Medical MEMS
	Materials for Bio- and Medical MEMS
M-014	3D POCKET-SHAPE DERMIS-EQUIVALENT AS A SKIN MATERIAL FOR A ROBOTIC FINGER Michio Kawai, Minghao Nie, Haruka Oda, Yuya Morimoto, and Shoji Takeuchi University of Tokyo, JAPAN
T-015	DANDELION FLOWER LIKE, APTES FUNCTIONALIZED GALLIUM NITRIDE MICROSPHERE FOR FLUORESCENCE DETECTION OF BOVINE SERUM ALBUMIN PROTEIN Manimuthu Veerappan and Fei Wang Southern University of Science and Technology, CHINA
C 01C	

S-016 FACILE METHODS TO MAKE PDMS HYDROPHILIC: A TIME EVOLUTION STUDY FOR MICROFLUIDIC DEVICES Daniel J. O'Brien, Andrew J. Sedlack, and Makarand Paranjape *Georgetown University, USA*

Bio and Medical MEMS	
Medio	cal Microsystems (Probes, Implantables, Minimally Invasive, Etc.)
M-017	A FLEXIBLE AND STRETCHABLE KIRIGAMI-INSPIRED IMPLANTABLE NEURAL PROBE WITH FLOATING MICROSITES FOR ELECTROPHYSIOLOGY RECORDINGS Zhejun Guo ¹ , Bowen Ji ¹ , Longchun Wang ¹ , Bin Yang ¹ , Wei Wang ² , and Jingquan Liu ¹ ¹ Shanghai Jiao Tong University, CHINA and ² Peking University, CHINA
T-018	ACCESSING ANALYTES WITHIN ON-SKIN FLUIDS WITH WIRELESS EPIDERMAL OPTOELECTRONICS FOR BIOMEDICAL MONITORING Yujia Zhang ^{1,2} and Tiger H. Tao ^{1,2,3,4,5} ¹ Chinese Academy of Sciences (CAS), CHINA, ² University of Chinese Academy of Sciences (UCAS), CHINA, ³ ShanghaiTech University, CHINA, ⁴ Zhangjiang Laboratory, CHINA, and ⁵ Shanghai Brain/Al Center, CHINA
S-019	AN RF-POWERED WIRELESS MICRO-HEATER INTEGRATED WITH ACRYLATE-COMPOSITE-BASED TEMPERATURE REGULATOR FOR HYPERTHERMIA TREATMENT Chao-Chi Yeh and Yao-Joe Yang National Taiwan University, TAIWAN
M-020	CONCENTRIC, MEMS-BASED OPTOELECTROMECHANICAL PACER FOR MULTIMODAL CARDIAC EXCITATION Tobias Weber, Callum M. Zgierski-Johnston, Eric Klein, Suleman Ayub, Peter Kohl, Oliver Paul, and Patrick Ruther <i>University of Freiburg, GERMANY</i>
T-021	DERMAL ISF COLLECTION USING A SI MICRONEEDLE ARRAY Caleb A. Berry, Zachary R. Smith, Scott D. Collins, and Rosemary L. Smith <i>University of Maine, USA</i>
S-022	HETEROGENEOUS AND MULTIFUNCTIONAL SILK MICRONEEDLES FOR <i>IN SITU</i> TREATMENT OF BRAIN GLIOMA Zijing Wang ^{1,2} , Ruofeng Han ² , Zhifeng Shi ³ , Ying Mao ³ , Tiger H. Tao ² , and Nan Qin ² ¹ Shanghai Normal University, CHINA, ² Chinese Academy of Sciences (CAS), CHINA, and ³ Huashan Hospital of Fudan University, CHINA
M-023	HIGH-DENSITY MICRONEEDLE ARRAY (HIDMA): AN <i>IN VIVO</i> ELECTROPORATION METHOD FOR LOW-VOLTAGE GENE DELIVERY Junshi Li ¹ , Tongren Yang ² , Dong Huang ¹ , Yufeng Chen ¹ , Yuanyu Huang ² , and Zhihong Li ¹ ¹ Peking University, CHINA and ² Beijing Institute of Technology, CHINA
T-024	HIGH-SPEED AND STEPPING MEMS ROTARY ACTUATOR FOR MULTIMODAL, 360° SIDE-VIEWING ENDOSCOPIC PROBES Sayed Mohammad Hashem Jayhooni ¹ , Babak Assadsangabi ¹ , Geoffrey Hohert ² , Pierre Lane ² , Haishan Zeng ² , and Kenichi Takahata ¹ ¹ University of British Columbia, CANADA and ² British Columbia Cancer Research Centre, CANADA
S-025	HIGHLY STRETCHABLE MICROELECTRODE ARRAY FOR FREE-FORM 3D NEURONAL TISSUE Chaeyun Shim ¹ , Yehhyun Jo ¹ , Hyo Kyeong Cha ² , Mi Kyung Kim ¹ , Hyojung Kim ¹ , Geon Kook ¹ , Kiup Kim ¹ , Gi Hoon Son ² , and Hyunjoo J. Lee ¹ 'Korea Advanced Institute of Science and Technology (KAIST), KOREA and ² Korea University, KOREA

Medical Microsystems (Probes, Implantables, Minimally Invasive, Etc.)	
M-026	IMPLANTED WIRELESS INTRAMEDULLARY FLUID MODULATOR FOR BONE DENSITY AUGMENTATION Ziyu Chen ¹ , Sunggi Noh ² , Rhonda D. Prisby ² , and Jeong-Bong Lee ¹ ¹ University of Texas, Dallas, USA and ² University of Texas, Arlington, USA
T-027	LEAKY OPTO-ELECTRICAL NEURAL PROBE FOR OPTICAL STIMULATION AND ELECTROCHEMICAL DETECTION OF DOPAMINE EXOCYTOSIS Shashank Vasudevan, Janko Kajtez, Arto Heiskanen, Jenny Emnéus, and Stephan S. Keller Technical University of Denmark, DENMARK
S-028	MICROFLUIDIC CHIP FOR SIMULTANEOUS LOADING AND INJECTION OF A SINGLE CELL BY USING RACK AND PINION MECHANISMS Kevin T. Uning, Keita Ichikawa, Akiho Hirao, Taiga Michimoto, Tasuku Sato, Hiroaki Kume, Takumi Nishida, Shota Iwakawa, and Yoko Yamanishi Kyushu University, JAPAN
M-029	MICROMACHINED SHAPE MEMORY ALLOY ACTIVE STENT WITH WIRELESS MONITORING AND RE-EXPANSION FEATURES Yong Xian Ang, Farah Afiqa Mohd Ghazali, and Mohamed Sultan Mohamed Ali Universiti Teknologi Malaysia, MALAYSIA
T-030	PULSED WAVE DOPPLER ULTRASOUND USING 3.7 MHZ PMUTS TOWARD WEARABLE BLOOD FLOW MEASUREMENTS Hong Ding ¹ , Dengfei Yang ¹ , Jinghui Xu ² , Xuying Chen ¹ , Xianhao Le ¹ , Yong Wang ¹ , Liwei Lin ³ , and Jin Xie ¹ ¹ Zhejiang University, CHINA, ² University of California, Berkeley, USA, ³ Jilin University, CHINA, and ⁴ Guangzhou Chen Fang Info Tech Ltd., CHINA
S-031	SKIN-ATTACHABLE AND IMPLANTABLE POLYMER MICRONEEDLE BIOSENSOR FOR CONTINUOUS GLUCOSE MONITORING Hyunsik Kim ¹ , Hyosang Yoon ¹ , Md. Sharifuzzaman ¹ , Jongcheol Park ² , Daeheum Kim ¹ , and Jaeyeong Park ¹ ¹ Kwangwoon University, KOREA and ² National Nanofab Center, KOREA
M-032	TRANSDERMAL DRUG DELIVERY BASED ON LIQUID NEEDLES GENERATED BY HYPERSONIC SYSTEMS Ji Liu, Xinyi Guo, Mengjie Sun, Huihui Xu, Wei Pang, and Xuexin Duan <i>Tianjin University, CHINA</i>
T-033	TWO-LAYER SCAFFOLD PLATFORMS FOR DRUG SCREENING OF NASOPHARYNGEAL EPITHELIAL CELLS Bowie P. Lam, Ka Chi Sarah Cheung, Yun Wah Lam, and Stella W. Pang City University of Hong Kong, HONG KONG
S-034	ULTRA-FLEXIBLE NEURAL PROBES WITH ELECTROCHEMICAL MODIFIED ELECTRODES FOR RELIABLE, CHRONICAL RECORDING Yu Zhou ^{1,2} , Zhitao Zhou ¹ , Ming Li ¹ , Tiger H. Tao ^{1,2} , and Xiaoling Wei ¹ ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA
M-035	ULTRA-THIN, ULTRA-CONFORMAL NEURAL INTERFACES Ting Xiao ^{1,2} , Zhitao Zhou ^{2,3} , Faming Zheng ^{2,3} , Yu Zhou ^{2,3} , Feihong Xu ^{2,3} , Shan Zhang ^{2,3} , Zhifeng Shi ² , Ying Mao ⁴ , and Tiger H. Tao ^{2,3} ¹ Shanghai Normal University, CHINA, ² Chinese Academy of Sciences (CAS), CHINA, ³ University of Chinese Academy of Sciences (UCAS), CHINA, and ⁴ Fudan University, CHINA
T-036	WAFER-SCALE GRAPHENE-BASED SOFT ELECTRODE ARRAY WITH OPTOGENETIC COMPATIBILITY Andrada I. Velea ¹ , Sten Vollebregt ¹ , Gandhika K. Wardhana ¹ , and Vasiliki Giaoka ^{1,2}

¹TU Delft, NETHERLANDS and ²Fraunhofer IZM, GERMANY

Bio and Medical MEMS	
	Nanobiotechnology
S-037	BIOGENIC PALLADIUM NANOPARTICLES FOR IMPROVING BIOELECTRICITY GENERATION IN MICROBIAL FUEL CELLS Mehdi Tahernia, Maedeh Mohammadifar, Shuai Feng, and Seokheun Choi State University of New York, Binghamton, USA
M-038	MOTILITY OF MICROTUBULES DRIVEN BY KINESIN IN A VISCOELASTIC MEDIA ON AU NANO-PILLAR SUBSTRATE Masayuki Furukawa, Taikopaul Kaneko, and Ryuji Yokokawa <i>Kyoto University, JAPAN</i>
T-039	NANO CAPSULE BASED CHEMICAL RELEASING SYSTEM FOR INSECT-COMPUTER HYBRID ROBOT Long D. Le ¹ , Keitaro Sou ^{1,2} , and Hirotaka Sato ¹ ¹ Nanyang Technological University, SINGAPORE and ² Waseda University, JAPAN
	Bio and Medical MEMS
	Tissue Engineering
S-040	3D SILK-BASED BIOELECTRONIC SCAFFOLDS FOR OSTEOCHONDRAL REGENERATION Zhiheng Gao ^{1,2} , Shengkun Li ³ , Fang Chen ² , Yinghui Hua ³ , Tiger H. Tao ^{1,2} , and Keyin Liu ² ¹ ShanghaiTech University, CHINA, ² Chinese Academy of Sciences (CAS), CHINA, and ³ Huashan Hospital of Fudan University, CHINA
T-041	AIRWAY-ON-A-CHIP: DEVELOPMENT AND <i>IN VITRO</i> VALIDATION OF A MICROFLUIDIC CELL CULTURE MODEL FOR CHRONIC OBSTRUCTIVE PULMONARY DISEASE Tanya J. Bennet ¹ , Brenda Shen ² , Jeremy Siwik ³ , Stephanie Pan ¹ , Cheng Wei Tony Yang ¹ , Tillie Hackett ¹ , Don D. Sin ¹ , Tillie L. Hackett ¹ , and Karen C. Cheung ¹ ¹ University of British Columbia, CANADA, ² McGill University, CANADA, and ³ University of Arizona, USA
S-042	AN ON-CHIP VASCULAR NETWORK TO INVESTIGATE PERICYTE MIGRATION AND INTERCELLULAR SIGNALING Scott Erickson ¹ , Hiroki Ihara ¹ , Sanshiro Hanada ² , Koichi Nishiyama ² , Takashi Miura ³ , and Ryuji Yokokawa ¹ ¹ Kyoto University, JAPAN, ² Kumamoto University, JAPAN, and ³ Kyushu University, JAPAN
M-043	ASSEMBLY OF MODULAR TISSUE STRUCTURE OF MICRO-FIBERS USING MAGNETIC FORCE AND CAPILLARY FORCE Zhaoyu Wang, Taisuke Masuda, Katsuki Miki, Hisataka Maruyama, and Fumihito Arai Nagoya University, JAPAN
T-044	CONTROLLED STRAIN OF CARDIAC MICROTISSUE VIA MAGNETIC ACTUATION Joshua Javor, Subramanian Sundaram, Christopher Chen, and David J. Bishop Boston University, USA
S-045	FORMATION OF MICRO-SIZE PERFUSABLE CHANNELS IN MM-THICK MUSCLE TISSUE Yasuaki Ishii, Yuya Morimoto, Ai Shima, and Shoji Takeuchi University of Tokyo, JAPAN

	Tissue Engineering
M-046	MICRO TISSUE ASSEMBLY FOR CO-CULTURING 3D SKELETAL MUSCLE AND ADIPOSE TISSUES Byeongwook Jo, Minghao Nie, Ai Shima, Yuya Morimoto, and Shoji Takeuchi University of Tokyo, JAPAN
T-047	QUALITY PREDICTION OF EMBRYONIC BODIES ON INTEGRATED SPHEROID CULTURE CHIP BY USING 3D CONVOLUTIONAL NEURAL NETWORK Shuya Suda ¹ , Chihiro Aoyama ¹ , and Masashi Ikeuchi ^{1,2} ¹ University of Tokyo, JAPAN and ² Cymss-bio Inc., JAPAN
	Bio and Medical MEMS
	Other
S-048	A HIGH SENSITIVE AND LOW PARASITIC CAPACITANCE FOLDING MICRO COIL WITH MULTILAYERED ZIGZAG DIAMETER WIRING Tomohiko Izumizaki, Masataka Hori, and Tetsuji Dohi <i>Chuo University, JAPAN</i>
M-049	A MICROCHAMBER DEVICE FOR EVALUATION OF THE BARRIER FUNCTIONS OF EPITHELIAL CELLS Masayoshi Nakano, Mamiko Tsugane, Daichi Sakuma, Fumiko Sunaga, and Hiroaki Suzuki Chuo University, JAPAN
T-050	<i>IN-SITU</i> ELECTROPORATION ON A MICROPORE-ARRAYED FILTER FOR CELL LABELLING Tingting Hun ¹ , Yaoping Liu ¹ , Yechang Guo ¹ , Dong Huang ¹ , Mingxin Xu ² , Qi Wang ² , Zhihong Li ^{1,3} , and Wei Wang ^{1,3} ¹ Peking University, CHINA, ² Dalian Medical University, CHINA, and ³ National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA
S-051	MICRO-FABRICATED SKIN-LIKE ALN/POLYIMIDE/PDMS SENSOR FOR OBSTRUCTIVE SLEEP APNEA MONITORING Tao Sun ¹ and Wei Mong Tsang ² ¹ Massachusetts Institute of Technology, USA and ² Chongqing United Microelectronics Center Co., Ltd., CHINA
M-052	ON CHIP MONITORING OF TIGHT JUNCTIONS FORMED ON AN EPITHELIAL MONOLAYER AND THE EFFECT OF EXTRACELLULAR CALCIUM ION REMOVAL FROM APICAL AND BASAL SIDES Yuji Takata ¹ , Ryohei Ueno ¹ , Ramin Banan Sadeghian ² , Yang Liu ¹ , Kaori Naganuma ² , Kiyotaka Tsuji ² , and Ryuji Yokokawa ¹ ¹ Kyoto University, JAPAN and ² Panasonic Corporation, JAPAN
	EMS Actuators & PowerMEMS
	Actuator Components & Systems
T-053	15 MILLINEWTON FORCE, 1 MILLIMETER DISPLACEMENT, LOW-POWER MEMS GRIPPER Craig B. Schindler, Hani C. Gomez, Dillon Acker-James, Daniel Teal, Wei Li, and Kristofer S.J. Pister University of California, Berkeley, USA
S-054	A CATERPILLAR-INSPIRED SOFT ROBOT BASED ON THERMAL EXPANSION Zihao Song, Ryosuke Matsuda, Ken Matsubara, Fumika Nakamura, and Hiroki Ota Yokohama National University, JAPAN

29

	Actuator Components & Systems
M-055	A PLANAR SINGLE-ACTUATOR BI-STABLE MECHANICAL LATCH AS AN ELECTRICAL SWITCH Yang Bu ¹ , Yue Jiang ² , Saeko Kawano ³ , Brian S.T. Tam ¹ , Sheng Ni ¹ , Liying Lin ¹ , Osamu Tabata ³ , Toshiyuki Tsuchiya ³ , Xiaohong Wang ² , and Man Wong ¹ ¹ Hong Kong University of Science and Technology, CHINA, ² Tsinghua University, CHINA, and ³ Kyoto University, JAPAN
T-056	DEVELOPMENT OF MICRO PUMP USING MAGNETIC ARTIFICIAL CILIA WITH METACHRONAL WAVE Hayato Shinoda and Fujio Tsumori Kyushu University, JAPAN
S-057	ELECTRICALLY CONTROLLED GEL ACTUATOR USING LIQUID METAL ELECTRODE Ken Matsubara, Yoshimi Tanaka, Ohmi Fuchiwaki, and Hiroki Ota Yokohama National University, JAPAN
M-058	MANIPULATION OF MICROSCALE OBJECTS UTILIZING THE SMECTIC-ISOTROPIC PHASE INTERFACE FORCE BY A LIQUID CRYSTALLINE MICROACTUATOR DEVICE Jose Eduardo Mejia, Tomohiro Tsuji, and Shigeomi Chono Kochi University of Technology, JAPAN
T-059	MICRO ELECTROMAGNETIC FLAT MOTOR USING AN 80-POLES AND 0.3-MM-THICK RING MAGNET FOR HIGH TORQUE Dong Han, Keita Nagai, and Tadahiko Shinshi Tokyo Institute of Technology, JAPAN
S-060	PIEZOELECTRIC MICROSPEAKER USING NOVEL DRIVING APPROACH AND ELECTRODE DESIGN FOR FREQUENCY RANGE IMPROVEMENT Hsu-Hsiang Cheng ¹ , Sung-Cheng Lo ¹ , Yi-Jia Wang ¹ , Yu-Chen Chen ¹ , Wei-Cheng Lai ¹ , Meng-Lin Hsieh ¹ , Mingching Wu ² , and Weileun Fang ¹ ¹ National Tsing Hua University, TAIWAN and ² CoretronicMEMS Co., Ltd., TAIWAN
M-061	RESONANT PZT MEMS MIRROR WITH SEGMENTED ELECTRODES Adrien Piot ¹ , Jaka Pribošek ¹ , Jordan Maufay ¹ , Johannes Schicker ¹ , Andreas Tortschanoff ¹ , Ramin Matloub ² , Paul Muralt ² , and Mohssen Moridi ¹ ¹ Silicon Austria Labs GmbH, AUSTRIA and ² École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND
T-062	SELF-CLEANING DEVICE USING SAW ACTUATION Hyeonseok Song, Jeongmin Lee, Kang Yong Lee, and Sang Kug Chung Myongji University, KOREA
S-063	TOWARDS AERODYNAMIC CONTROL OF MINIATURE ROCKETS WITH MEMS CONTROL SURFACES Ahad M. Rauf, Brian G. Kilberg, Craig B. Schindler, Sang A. Park, and Kristofer S.J. Pister University of California, Berkeley, USA
M-064	WIDE ANGLE AND HIGH FREQUENCY (>120 DEGREES@ 10 KHZ/90 DEGREES@ 30 KHZ) RESONANT SI-MEMS MIRROR USING A NOVEL TUNING-FORK DRIVING Takami Ishida, Kazuki Komaki, Takakiyo Harigai, Ryoichi Takayama, and Takuma Katayama Panasonic Corporation, JAPAN

	EMS Actuators & PowerMEMS
	Manufacturing for Actuators & PowerMEMS
T-065	A MEMS PIEZOELECTRIC VIBRATION ENERGY HARVESTER BASED ON TRAPEZOIDAL CANTILEVER BEAM ARRAY Xianming He, Quan Wen, Zhiyu Wen, and Xiaojing Mu <i>Chongqing University, CHINA</i>
S-066	ELECTROMAGNETIC ENERGY HARVESTER WITH INERTIAL ROTARY STRUCTURE FOR HUMAN MOTION APPLICATION AT ULTRA-LOW FREQUENCY Anxin Luo ^{1,2} , Yulong Zhang ¹ , Weihang Xu ¹ , Yan Lu ² , and Fei Wang ¹ ¹ Southern University of Science and Technology, CHINA and ² University of Macau, CHINA
M-067	PNIPAM/SWCNT-BASED HYDROGEL MICRO-GRIPPER DRIVEN BY INFRARED LIGHT FOR INTRAVASCULAR SURGERY Takaya Kuroda and Hiroaki Onoe <i>Keio University, JAPAN</i>
T-068	SELF-POWERED WIND SENSOR BASED ON TRIBOELECTRIC GENERATOR WITH CURVED FLAP ARRAY FOR MULTI-DIRECTIONAL WIND SPEED DETECTION Dae-Sung Kwon, Soonjae Pyo, and Jongbaeg Kim Yonsei University, KOREA
S-069	SOUND PRESSURE AND LOW FREQUENCY ENHANCEMENT USING NOVEL PZT MEMS MICROSPEAKER DESIGN Shih-Hsiung Tseng ^{1,2} , Sung-Cheng Lo ¹ , Yi-Jia Wang ¹ , Shih-Wei Lin ¹ , Mingching Wu ² , and Weileun Fang ¹ ¹ National Tsing Hua University, TAIWAN and ² Coretronic MEMS Corp., TAIWAN
M-070	THIN-FILM PROCESSING TECHNOLOGIES OF PIEZOELECTRIC MATERIALS FOR IOT/IOE APPLICATIONS Hiroki Kobayashi, Kouhei Matsuoka, Tatsurou Tsuyuki, Akiyoshi Suzuki, Isao Kimura, Takehito Jinbo, and Koukou Suu <i>ULVAC, Inc., JAPAN</i>
	EMS Actuators & PowerMEMS
	Materials for Actuators & PowerMEMS
T-071	A HIGH-PERFORMANCE PHOTO-BIOSUPERCAPACITOR BASED ON MANGANESE OXIDE/CARBON NANOTUBE/PEDOT:PSS NANOCOMPOSITES Lin Liu and Seokheun Choi State University of New York, Binghamton, USA
S-072	100-µm-THICK HIGH-ENERGY-DENSITY ELECTROPLATED CoPt PERMANENT MAGNETS Yuzheng Wang, Beatriz Y. Jimenez, and David P. Arnold University of Florida, USA
M-073	CARBON BLACK NANOPARTICLES INCLUSION IN BISMUTH TELLURIDE FILM FOR MICRO THERMOELECTRIC GENERATOR APPLICATION Khairul Fadzli Samat ^{1,2} , Yijie Li ¹ , Nguyen Van Toan ¹ , and Takahito Ono ¹ ¹ Tohoku University, JAPAN and ² Universiti Teknikal Malaysia Melaka, MALAYSIA
T-074	GRAPHENE QUANTUM DOTS INDUCED NIC02S4 AS AN EFFICIENT ELECTROCATALYST FOR HYDROGEN HARVEST Liangjie Ren ¹ , Yuanyuan Huang ^{1,2} , Renxiao Xu ¹ , and Liwei Lin ¹ ¹ University of California, Berkeley, USA and ² Huazhong University of Science and Technology, CHINA

	Materials for Actuators & PowerMEMS
S-075	HIGH PERFORMANCE MICRO-THERMOELECTRIC GENERATOR BASED ON METAL DOPED ELECTROCHEMICAL DEPOSITION Nguyen Van Toan, Truong Thi Kim Tuoi, Khairul Fadzli Samat, Hongtao Sui, Naoki Inomata, Masaya Toda, and Takahito Ono <i>Tohoku University, JAPAN</i>
M-076	MICROELECTROMECHANICAL SWITCH WITH CARBON NANOTUBE ARRAYS FOR HIGH-TEMPERATURE OPERATION Eunhwan Jo ¹ , Yunsung Kang ¹ , Sangjun Sim ¹ , Jungwook Choi ² , and Jongbaeg Kim ¹ ¹ Yonsei University, KOREA and ² Yeungnam University, KOREA
T-077	STRONG MAGNETOELECTRIC EFFECTS OF 2-2 COMPOSITES MADE OF AIN FILMS GROWN BY PLASMA-ENHANCED ATOMIC LAYER DEPOSITION ON MAGNETOSTRICTIVE FOILS FOR ENERGY HARVESTING APPLICATIONS Tai Nguyen ^{1,2} , Noureddine Adjeroud', Sebastjan Glinsek ¹ , Yves Fleming', Jérôme Guillot', and Jérôme Polesel-Maris' ¹ Luxembourg Institute of Science and Technology, LUXEMBOURG and ² University of Luxembourg, LUXEMBOURG
S-078	SUPERHYDROPHOBIC TRIBOELECTRIC TEXTILE FOR SENSING AND ENERGY HARVESTING APPLICATIONS Feng Wen ¹ , Tianyiyi He ¹ , Qiangfeng Shi ¹ , Ting Zhang ² , and Chengkuo Lee ¹ ¹ National University of Singapore, SINGAPORE and ² Chinese Academy of Sciences (CAS), CHINA
	EMS Actuators & PowerMEMS
	PowerMEMS Components & Systems
M-079	3D PRINTED PYROELECTRIC LITHIUM-NIOBATE HIGH VOLTAGE SOURCE WITH PULL-IN REGULATED OUTPUT Di Ni, Benyamin Davaji, Robert Shepherd, and Amit Lal <i>Cornell University, USA</i>
T-080	A HIGH-PERFORMANCE ELECTRODYNAMIC MICRO-RECEIVER FOR LOW-FREQUENCY WIRELESS POWER TRANSFER Miah A. Halim, Spencer E. Smith, Joseph M. Samman, and David P. Arnold University of Florida, USA
S-081	A PARADOXICAL APPROACH TO ENHANCE THE OUTPUT POWER OF VIBRATIONAL ENERGY HARVESTER BEYOND THE IMPEDANCE MATCHING CONDITIONS Hiroaki Honma, Yukiya Tohyama, and Hiroshi Toshiyoshi University of Tokyo, JAPAN
M-082	FULLY ADDITIVELY MANUFACTURED, NANOSTRUCTURED, MINIATURE IONIC LIQUID ELECTROSPRAY SOURCES Dulce Viridiana Melo-Máximo ^{1,2} and Luis Fernando Velásquez-García ¹ ¹ Massachusetts Institute of Technology, USA and ² Tecnológico de Monterrey, MEXICO
T-083	AN SOI-BASED BACK-JUNCTION BACK-CONTACT THIN-FILM TRITIUM BETAVOLTAIC CELL WITH INTERDIGITATED ELECTRODES Meng Wu and Jinwen Zhang Peking University, CHINA
S-084	AN ULTRAFAST MICRO SUPERCAPACITOR WITH REDUCED INTERFACIAL RESISTANCE Fan Xia ^{1,2} , Sixing Xu ^{1,2} , and Xiaohong Wang ¹ ¹ Tsinghua University, CHINA and ² Beijing National Research Center for Information Science and Technology, CHINA

	PowerMEMS Components & Systems
M-085	HIGH-VOLTAGE MEMS PLASMA SWITCH FOR BOOSTING THE ENERGY TRANSFER EFFICIENCY IN TRIBOELECTRIC NANOGENERATORS Hemin Zhang ^{1,2} , Frédéric Marty ¹ , Dimitri Galayko ³ , Naida Hodzic ¹ , and Philippe Basset ¹ ¹ Universite Paris-Est, FRANCE, ² University of Cambridge, UK, and ³ Sorbonne Universites, FRANCE
T-086	TOWARD STANDARDIZED HIGH-POWER ON-CHIP DEVICES: MICRO SUPERCAPACITORS BASED ON MNO2 DECORATED MESOPOROUS GOLD ELECTRODES Fan Xia ¹ , Sixing Xu ^{1,2} , Oifan Gao ^{1,2} , and Xiaohong Wang ^{1,2} ¹ Tsinghua University, CHINA and ² Beijing National Research Center for Information Science and Technology, CHINA
	EMS Actuators & PowerMEMS
	Other
S-087	A NOVEL BISTABLE DEVICE DRIVEN BY SINGLE ACTUATOR VIA MOMENT INPUT Shin-Wei Huang, Fan-Chi Lin, and Yao-Joe Yang National Taiwan University, TAIWAN
M-088	DEMONSTRATION OF 155.1 µW WAKE-UP GAS SENSOR NODE TOWARD 8 MONTH LIFETIME Sang Kameron Minh Truong, Kyeong Heon Kim, Shakir-ul Haque Khan, Justin Salvant, Aishwaryadev Banerjee, Ryan Looper, Carlos H. Mastrangelo, and Hanseup Kim University of Utah, USA
	EMS Physical Sensors
	Fluidic Sensors (Flow, Pressure, Density, Viscosity, Etc.)
T-089	DESIGN AND CHARACTERIZATION OF A CMOS MEMS CAPACITIVE SQUEEZE-FILM PRESSURE SENSOR WITH HIGH SENSITIVITY Kuan-Yu Hsieh, Jonathan Lee, and Michael SC. Lu National Tsing Hua University, TAIWAN
S-090	DEVELOPMENT OF STENT FLOW SENSOR DEVICE EVALUATING BREATHING PROPERTY AT AIRWAY IN EXPERIMENTAL ANIMAL UNDER FREE MOVE CONDITION Hayato Noma ¹ , Yoshihiro Hasegawa ¹ , Kazuhiro Taniguchi ¹ , Miyoko Matsushima ² , Tsutomu Kawabe ² , and Mitsuhiro Shikida ¹ ¹ Hiroshima City University, JAPAN and ² Nagoya University, JAPAN
M-091	FLEXIBLE AND WEARABLE FLOW SENSOR USING SPINNABLE CARBON NANOTUBE NANOFILM FOR RESPIRATION MONITORING Toan Dinh ^{1,2} , Thanh Nguyen ¹ , Van Thanh Dau ¹ , Foisal Abu Riduan ¹ , Canh-Dung Tran ² , Hoang-Phuong Phan ¹ , Tuan-Khoa Nguyen ¹ , Pablo Guzman ¹ , Nam-Trung Nguyen ¹ , and Dzung Viet Dao ¹ ¹ Griffith University, AUSTRALIA and ² University of Southern Queensland, AUSTRALIA
T-092	FLEXIBLE ZNO THIN FILM SURFACE ACOUSTIC WAVE DEVICE FOR FLOW RATE MEASUREMENT Qian Zhang ¹ , Yong Wang ¹ , Ran Tao ² , Dongsheng Li ¹ , Yongqing Fu ² , and Jin Xie ¹ ¹ Zhejiang University, CHINA and ² Northumbria University, UK

_	
	Fluidic Sensors (Flow, Pressure, Density, Viscosity, Etc.)
S-093	MULTIFUNCTIONAL RHINOMANOMETER WITH INTEGRATED HIGHLY SENSITIVE FLEXIBLE PIEZOELECTRIC-BEAM-ARRAY FLOW AND FAST DYNAMIC RESPONSE HUMIDITY SENSORS Guo-Hua Feng and Pin-Cheng Su National Chung Cheng University, TAIWAN
M-094	AWARD NOMINEE* PIPETTE BASED VISCOMETER WITH PRESSURE SENSOR ELEMENT Sinwoo Cho ¹ , Thanh-Vinh Nguyen ² , Miki Norihisa ¹ , and Hidetoshi Takahashi ¹ ¹ Keio University, JAPAN and ² National Institute of Advanced Industrial Science and Technology (AIST), JAPAN
T-095	ROBUST AND SENSITIVE SENSING OF UNSTEADY FLOWS USING A HAIR-LIKE MACROSCOPIC GRAPHENE FIBER Binpeng Zhan, Bo Fang, Srikrishna C. Bodepudi, Zhen Xu, Jiahuan Cui, Yang Xu, Chao Gao, and Huan Hu Zhejiang University, CHINA
S-096	SANDWICH STRUCTURED FLEXIBLE THERMAL SHEAR STRESS SENSOR WITH IMPROVED PERFORMANCE Baoyun Sun, Wei Gao, Pengbin Wang, Runbo Chen, Jian Luo, Jinjun Deng, Weizheng Yuan, and Binghe Ma Northwestern Polytechnical University, CHINA
M-097	SENSITIVITY IMPROVEMENT OF P+SI/AU THERMOPILE-BASED GAS FLOW SENSOR BY OPTIMIZING HEAT-SINK AND THERMAL-INSULATION CONFIGURATION Shanshan Wang, Jiachou Wang, and Xinxin Li <i>Chinese Academy of Sciences (CAS), CHINA</i>
	EMS Physical Sensors
Force &	Displacement Sensors (Tactile, Force, Torque, Stress & Strain Sensor)
T-098	A 53.36PF/MPA CMOS-MEMS PRESSURE SENSOR WITH COMPACT SIZE AND INTEGRATED DIGITAL READOUT Jyun-Jie Yang, Gordon Tsai, and Tsung-Heng Tsai National Chung Cheng University, TAIWAN
S-099	A HIGHLY SENSITIVE SELF-POWERED FLEX SENSOR FOR PROSTHETIC ARM AND INTERPRETING GESTICULATION Pukar Maharjan, Trilochan Bhatta, Hyunok Cho, and Jae Y. Park <i>Kwangwoon University, KOREA</i>
M-100	A MAGNETIC-POLYMER-BASED PASSIVE PRESSURE SENSOR REALIZED WITH A FOLDABLE PARYLENE SUBSTRATE Yung-Chih Lin and Yao-Joe Yang National Taiwan University, TAIWAN
T-101	CROSSTALK-FREE MESH-EMBEDDED TACTILE SENSOR ARRAY WITH ELECTRICALLY ISOLATED SENSING CELLS Kyubin Bae, Soonjae Pyo, and Jongbaeg Kim Yonsei University, KOREA
S-102	DIRECT BINARY ENCODING OF DISPLACEMENTS ON THE NANO-SCALE Philip Schmitt and Martin Hoffmann Ruhr University Bochum, GERMANY
M-103	OPTOELECTRONIC ENHANCEMENT FOR PIEZORESISTIVE PRESSURE SENSOR Thanh Nguyen, Toan Dinh, Hoang-Phuong Phan, Tuan-Khoa Nguyen, Abu Riduan Md Foisal, Nam-Trung Nguyen, and Dzung Viet Dao <i>Griffith University, AUSTRALIA</i>

Force & Displacement Sensors (Tactile, Force, Torque, Stress & Strain Sensor)

- T-104 SELF-RECOVERING 3-DIMENSIONAL MICRO PORE STRUCTURE PRESSURE SENSOR USING SHAPE MEMORY POLYMER Byung-geon Park¹, Young Jung¹, Myung-gyu Shin², Jongsoo Ko², and Hanchul Cho¹ ¹Korea Institute of Industrial Technology, KOREA and ²Pusan National University, KOREA
- S-105 STRUCTURAL COLOR BASED TACTILE SENSOR FOR FLEXIBLE ENDOSCOPIC SURGERY TO DETECT GRAB STATE AND ORGANS HARDNESS Yusaku Maeda^{1,2}, Kyohei Terao¹, Fusao Shimokawa¹, and Hidekuni Takao¹

¹Kagawa University, JAPAN and ²Kagawa College, JAPAN

M-106 VERTICALLY INTEGRATED DOUBLE-BRIDGE DESIGN FOR CMOS-MEMS TRI-AXIAL PIEZO-RESISTIVE FORCE SENSOR Jia-Horng Lee, Sheng-Kai Yeh, and Weileun Fang National Tsing Hua University, TAIWAN

EMS Physical Sensors

Gas & Chemical Sensors

- T-107 A BIOCHEMICAL SENSOR WITH ARTIFICIAL 3D ENZYME NETWORK Hussam Ibrahim, Satyanarayana Moru, and Liang Dong Iowa State University, USA
- S-108 A FLEXIBLE PHOTOELECTROCHEMICAL SENSOR FOR HEXAVALENT CHROMIUM DETECTION Qingyuan Liu^{1,2}, Jungyoon Kim², and Tianhong Cui² ¹Tsinghua University, TAIWAN and ²University of Minnesota, USA
- M-109 FABRICATION OF WO₃ NANOCONE ARRAYS FOR HIGHLY SENSITIVE C₂H₆ GAS SENSOR INTEGRATED WITH LOW POWERED INPLANE MICROHEATER Md Ridwan Adib and Keekeun Lee Ajou University, KOREA
- T-110 IN-SITU MONITORING OF GAS MOLECULES IN CHROMATOGRAPHY BY UTILIZING A PRESSURE SENSOR Ashrafuzzaman Bulbul and Hanseup Kim University of Utah, USA
- S-111 INTEGRATED PHOSPHATE AND PH SENSING SYSTEM FOR WATER QUALITY MONITORING Renuka Bowrothu¹, Todd Schumann¹, Haein Kim¹, Kyoung Tae Kim², Sunghyun Hwang¹, Yoonseok Lee¹, and Yong Kyu Yoon¹ ¹University of Florida, USA and²University of Washington, USA
- M-112 METAMATERIAL GAS SENSING PLATFORM BASED ON SURFACE-ENHANCED INFRARED ABSORPTION Hong Zhou, Dongxiao Li, Xindan Hui, Donglin Hu, Xin Chen, Xianming He, and Xiaojing Mu Chongqing University, CHINA
- T-113 MICROMACHINED MASS-SENSITIVE AND CAPACITIVE CHEMICA MULTISENSOR USING SINGLE POLYMERIC SENSING FILM Steven A. Schwartz¹, Oliver Brand¹, and Luke A. Beardslee² ¹Georgia Institute of Technology, USA and ²Naval Submarine Medical Research Laboratory, USA
- S-114 MULTI-BAND MID-IR MOLECULES IDENTIFICATION USING PLASMONIC METAMATERIALS INDUCED BY BRIGHT-DARK COUPLING Zhihao Ren, Zhangqi Dang, and Chengkuo Lee National University of Singapore, SINGAPORE

Gas & Chemical Sensors M-115 SUSPENDED ALUMINA MEMBRANE FOR GA203 GAS SENSOR WITH ENHANCED LIFETIME AT HIGH-TEMPERATURE Han-II Jeong, Gyujun Choi, and Jongbaeg Kim Yonsei University, KOREA T-116 THRESHOLD POINT MODULATION OF A WAKE-UP NANO-GAP GAS SENSOR Shakir-ul Haque Khan, Aishwaryadev Banerjee, Kyeong Heon Kim, Justin Salvant, Ryan Looper, Carlos H. Mastrangelo, and Hanseup Kim University of Utah, USA EMS Physical Sensors Inertial Sensors (Gyros, Accelerometers, Resonators, Etc.) 0.0062 °/√hr ANGLE RANDOM WALK AND 0.027 °/hr BIAS S-117 INSTABILITY FROM A MICRO-SHELL RESONATOR **GYROSCOPE WITH SURFACE ELECTRODES** Sajal Singh, Jong-Kwan Woo, Guohong He, Jae Yoong Cho, and Khalil Naiafi University of Michigan, USA M-118 A HERMETICALLY-SEALED 2.9MHZ N=3 DISK BAW GYROSCOPE WITH SUB-DEGREE-PER-HOUR BIAS INSTABILITY Haoran Wen, Anosh Daruwalla, Chang-Shun Liu, and Farrokh Ayazi Georgia Institute of Technology, USA T-119 A RELIABLE LIQUID-BASED HIGH SENSITIVE MICRO THERMORESISTIVE CONVECTIVE ACCELEROMETER BY USING 0.35µM CMOS MEMS TECHNOLOGY Xiaoyi Wang¹, Wei Xu², Gyuha Lim¹, and Yi-Kuen Lee¹ ¹Hong Kong University of Science and Technology, HONG KONG and ²Shenzhen University, CHINA S-120 A WHEELED HORIZONTAL DUAL-AXIS MEMS GYROSCOPE BASED ON SINGLE PROOF MASS WITH MECHANICAL COUPLING SUPPRESSION SILICON GRATINGS Haibing Yang, Jian Cui, and Qiancheng Zhao Peking University, CHINA ADAPTIVE ON-LINE SELF-CALIBRATION OF ERRORS IN M-121 MULTI-STAGE-NOISE-SHAPING (MASH) SIGMA-DELTA MODULATOR GYROSCOPE Fang Chen', Zuxiang Wen², Wei Zhou¹, Zao Ni¹, and Xinxin Li¹ ¹*Chinese Academy of Sciences (CAS), CHINA and* ²Soochow University, CHINA T-122 LINEAR PARAMETRIC AMPLIFICATION/ATTENUATION WITHOUT SPRING HARDENING/SOFTENING EFFECT IN MEMS GYROSCOPES Haibin Wu, Xudong Zheng, Yiyu Lin, Zhipeng Ma, and Zhonghe Jin Zhejiang University, CHINA MASS TUNING IN WEAKLY COUPLED LOW-Q PIEZOELECTRIC MEMS S-123 **RESONATOR ARRAYS FOR PARTICULATE SENSING** Malar Chellasivalingam, Brian Graves, Adam Boies, and Ashwin A. Seshia University of Cambridge, UK MOLECULAR ELECTRONIC TRANSDUCER BASED TILTING SENSORS M-124

124 MOLECULAR ELECTRONIC TRANSDUCER BASED TILTING SENSORS Mengbing Liang¹, Stella Nickerson¹, Lenore Dai¹, and Hongyu Yu² ¹Arizona State University, USA and ²Hong Kong University of Science and Technology, HONG KONG

	Inertial Sensors (Gyros, Accelerometers, Resonators, Etc.)
T-125	NONLINEAR MODAL INTERACTIONS AND INTERNAL RESONANCE IN A MICROMACHINED DISK RESONATOR Jiangkun Sun ^{1,2} , Hemin Zhang ¹ , Dongyang Chen ¹ , Milind Pandit ¹ , Guillermo Sobreviela ¹ , Dingbang Xiao ² , Ming Zhuo ² , Dustin D. Gerrard ³ , Ryan Kwon ³ , Gabrielle Vukasin ³ , Thomas W. Kenny ³ , and Ashwin Seshia ¹ ¹ University of Cambridge, UK, ² National University of Defense Technology, CHINA, and ³ Stanford University, USA
S-126	PHASE-CONTROLLED OSCILLATION IN A CAPACITIVE NONLINEAR RING RESONATOR WITH ON-CHIP FEEDTHROUGH DE-EMBEDDING Dongyang Chen ^{1,2} , Hemin Zhang ² , Jiangkun Sun ^{2,3} , Milind Pandit ² , Guillermo Sobreviela ² , Yong Wang ¹ , Qian Zhang ¹ , Ashwin Seshia ² , and Jin Xie ¹ ¹ Zhejiang University, CHINA, ² University of Cambridge, UK, and ³ National University of Defense Technology, CHINA
M-127	SELF-PACKAGED THREE AXIS CAPACITIVE MEMS ACCELEROMETER Akin Aydemir ¹ and Tayfun Akin ^{1,2} ¹ METU MEMS Center, TURKEY and ² Middle East Technical University, TURKEY
T-128	SINGLE-CRYSTAL LITHIUM NIOBATE PIEZOELECTRIC DISK GYROSCOPE Kazutaka Obitani ¹ , Toshiyuki Tsuchiya ¹ , Kazutaka Araya ² , and Masanori Yachi ³ ¹ Kyoto University, JAPAN, ² Tamagawa Seiki Co., Ltd., JAPAN, and ³ Tamagawa Mobile Equipment Co., Ltd.
S-129	SUB-µW OPERATION AND NOISE REDUCTION OF MONOLITHIC 3-AXIS ACCELEROMETERS USING A SIGE-MEMS-ON-CMOS TECHNIQUE Yoshihiko Kurui ¹ , Hideyuki Tomizawa ¹ , Tomohiro Saito ¹ , Akira Fujimoto ¹ , Ippei Akita ² , Masaya Miyahara ³ , Kazusuke Maenaka ⁴ , Akihiro Kojima ¹ , and Hideki Shibata ¹ <i>1 Toshiba Corporation, JAPAN, ²National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, ³High Energy Accelerator Research Organization (KEK), JAPAN, and ⁴University of Hyogo, JAPAN</i>
M-130	TEMPERATURE ROBUST SILICON RESONANT ACCELEROMETER WITH STRESS ISOLATION FRAME MOUNTED ON AXIS-SYMMETRICAL ANCHORS Jian Cui, Mengxia Liu, Haibing Yang, Dong Li, and Qiancheng Zhao Peking University, CHINA
T-131	ULTRA-SENSITIVE FORCE TRANSDUCTION IN WEAKLY COUPLED RESONATORS Hemin Zhang ¹ , Milind Pandit ¹ , Jiangkun Sun ^{1,2} , Dongyang Chen ^{1,3} , Guillermo Sobreviela ¹ , Chun Zhao ⁴ , and Ashwin Seshia ¹ ¹ University of Cambridge, UK, ² National University of Defense Technology, CHINA, ³ Zhejiang University, CHINA, and ⁴ Huazhong University of Science and Technology, CHINA
	EMS Physical Sensors
	Manufacturing Techniques for Physical Sensors
S-132	H ₂ S SENSOR BASED ON MEMS HOTPLATE AND ON-CHIP GROWTH OF CUO-SNO ₂ NANOSHEETS FOR HIGH RESPONSE, FAST RECOVERY AND LOW POWER CONSUMPTION Gaoqiang Niu, Huimin Gong, Changhui Zhao, and Fei Wang Southern University of Science and Technology, CHINA
T-133	STRETCHABLE ARRAY OF RESISTIVE PRESSURE SENSORS IGNORING THE EFFECT OF STRAIN-INDUCED DEFORMATION Ryosuke Matsuda, Satoru Mizuguchi, Fumika Nakamura, Takuma Endo, Go Inamori, Yutaka Isoda, and Hiroki Ota Yokohama National University, JAPAN

FMS Ph	vsical Sensors
Enter I	Joiour Comooro

Materials for Physical Sensors

- S-134 HIGH AVAILABLE CARBON NANOTUBE FILM MICRO-DEVICE WITH CONTROLLABLE TEMPERATURE COEFFICIENT OF RESISTANCE Wei Gao, Baoyun Sun, Yu Zhang, Binghe Ma, Jian Luo, Jinjun Deng, and Weizheng Yuan Northwestern Polytechnical University, CHINA
- M-135 HIGHLY SENSITIVE AND STABLE PRESSURE SENSOR BASED ON POLYMER-MXENE COMPOSITE NANOFIBER MAT FOR WEARABLE HEALTH MONITORING Sudeep Sharma, Ashok Chhetry, Seokgyu Ko, and Jae Y. Park *Kwangwoon University, KOREA*
- T-136 PIEZOELECTRIC PVDF FILMS ENHANCED BY Ag@SIO2 NANOPARTICLES FOR MEMS TRANSDUCER Lingxiao Gao, Xin Chen, Shan Lu, Weibo Xie, Liangke Wu, and Xiaojing Mu Chongqing University, CHINA
- S-137 SURFACE HYDROXYLATED CaCu₃Ti₄O₁₂ WRAPPED POLYURETHANE SPONGE FOR HIGHLY SENSITIVE PRESSURE SENSING APPLICATION Ashok Chhetry, Sudeep Sharma, Seokgyu Ko, and Jae Y. Park *Kwangwoon University, KOREA*

EMS Physical Sensors

Nanoscale Physical Sensors

- M-138 A NANOELECTROMECHANICAL RESONATOR-BASED FLASH STYLE ANALOG TO DIGITAL CONVERTER Xuecui Zou¹, Sally Ahmed¹, Syed Kazmi², Pedro Da Costa¹, Mohammad Younis¹, and Hossein Fariborzi¹ ¹ King Abdullah University of Science and Technology, SAUDI ARABIA and ²Netherlands Institute for Space Research, NETHERLANDS
- T-139 BLACK PHOSPHORUS NEMS RESONANT INFRARED (IR) DETECTOR Arnob Islam¹, Jaesung Lee^{1,2}, and Philip X.-L. Feng^{1,2} ¹Case Western Reserve University, USA and ²University of Florida, USA
- S-140 THE SHEAR MODULUS DETERMINATION VIA QUARTZ CRYSTAL RESONATOR FOR GRAPHENE FILM PREPARED BY DROP CASTING Jintao Pang, Xianhao Le, Qian Zhang, Changju Wu, and Jin Xie Zhejiang University, CHINA

EMS Physical Sensors

Sonic & Ultrasonic MEMS Transducers (Microphones, PMUTs, Etc.)

- M-141 ACOUSTIC AMPLIFICATION USING CHARACTERISTIC GEOMETRY-BASED INTEGRATED PLATFORMS FOR MICROMECHANICAL RESONANT DETECTION Imran Latif, Masaya Toda, and Takahito Ono Tohoku University, JAPAN
- T-142 FIRST MEMS MICROPHONE BASED ON CAPACITIVE TRANSDUCTION IN VACUUM Samer Dagher^{1,2}, Frederic Souchon¹, Audrey Berthelot¹, Stephane Durand², and Loïc Joet¹ ¹Université Grenoble Alpes, FRANCE and ²LAUM UMR-CNRS, FRANCE
- S-143 IMPLANTABLE BIO-HEATING SYSTEM BASED ON PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS Flavius Pop, Bernard Herrera, and Matteo Rinaldi Northeastern University, USA

Sonic & Ultrasonic MEMS Transducers (Microphones, PMUTs, Etc.)

M-144 IMPLEMENTATION OF PIEZOELECTRIC MEMS MICROPHONE FOR SENSITIVITY AND SENSING RANGE ENHANCEMENT Shih-Hsiung Tseng^{1,2} Sung-Cheng Lo¹, Yu-Chen Chen¹

Shih-Hsiung Tseng^{1,2}, Sung-Cheng Lo¹, Yu-Chen Chen¹, Ya-Chu Lee¹, Mingching Wu², and Weileun Fang¹ ¹National Tsing Hua University, TAIWAN and ²Coretronic MEMS Corporation, TAIWAN

T-145 LONG-RANGE ULTRASOUND WAKE-UP RECEIVER WITH A PIEZOELECTRIC NANOSCALE ULTRASOUND TRANSDUCER (PNUT)

Pietro Simeoni, Matteo Castellani, and Gianluca Piazza Carnegie Mellon University, USA

S-146 LOW POWER CAPACITIVE ULTRASONIC TRANSCEIVER ARRAY FOR AIRBORNE OBJECT DETECTION

Sebastian Anzinger¹, Fabian Lickert^{2,3}, Alessandra Fusco³, Gabriele Bosetti², David Tumpold³, Christian Bretthauer³, and Alfons Dehe^{1,4} ¹University of Freiburg, GERMANY, ²Technical University Munich, GERMANY, ³Infineon Technologies AG, GERMANY, and ⁴Hahn-Schickard Institute for Applied Sciences, GERMANY

M-147 AWARD NOMINEE* MULTI-BAND MEMS RESONANT MICROPHONE ARRAY FOR CONTINUOUS LUNG-SOUND MONITORING AND CLASSIFICATION

Hai Liu, Song Liu, Anton A. Shkel, Yongkui Tang, and Eun Sok Kim University of Southern California, USA

T-148 NON-CONTACT SURFACE TEMPERATURE SENSING USING A SINGLE BIMORPH PMUTS ARRAY

Zhichun Shao¹, Sedat Pala¹, Yue Liang¹, Tao Jiang^{1,2}, and Liwei Lin^{1,2} ¹University of California, Berkeley, USA and ²Tsinghua-Berkeley Shenzhen Institute, CHINA

S-149 RADIUS OF CURVATURE MEASUREMENT USING PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS

Sedat Pala, Yue Liang, Benjamin Eovino, Zhichun Shao, and Liwei Lin University of California, Berkeley, USA

EMS Physical Sensors

Other

M-150 ANALYTICAL COMPACT MODEL FOR OPTO-MECHANICAL SENSOR

Houssein Elmi Dawale^{1,2}, Guillaume Jourdan^{1,2}, Loïc Sibeud^{1,2}, Sébastien Regord^{1,2}, Fabrice Lamberti^{1,2}, Sébastien Hentz^{1,2}, and Franck Badets^{1,2} ¹Université Grenoble Aloes. FRANCE and ²CEA-LETI. FRANCE

T-151 DESIGN OPTIMIZATION OF A LORENTZ FORCE, AMPLITUDE MODULATED, MEMS SPACE MAGNETOMETER Rosana A. Dias¹, Eurico E. Moreira^{1,2}, Filipe S. Alves¹, David Mesquita³, João Gaspar¹, and Luis A. Rocha² ¹International Iberian Nanotechnology Laboratory (INL), PORTUGAL, ²University of Minho, PORTUGAL, and ³Lusospace, Lda, PORTUGAL

S-152 ENVIRONMENTAL SENSING HUB ON SINGLE CHIP USING DOUBLE-SIDE POST-CMOS PROCESSES

Cheng-Chun Chang, Ping-Hsiu Hong, Sheng-Kai Yeh, Yung-Chian Lin, Mei-Feng Lai, and Weileun Fang *National Tsing Hua University, TAIWAN*

POSTER/ORAL PRESENTATIONS

Other

M-153 WEARABLE AND FLEXIBLE HEART PULSE SENSOR INTEGRATED WITH A SOFT PUMP AND ACTUATOR

Takafumi Yamaguchi¹, Takayuki Arie¹, Seiji Akita¹, and Kuniharu Takei^{1,2} ¹*Osaka Prefecture University, JAPAN and* ²*Japan Science and Technology Agency (JST), JAPAN*

Materials, Fabrication and Packaging for Generic MEMS & NEMS

Digital Micromanufacturing (Laser Micromachining, Additive Manufacturing)

- T-154 BIOMIMETIC BARBED MICRONEEDLES FOR HIGHLY ROBUST TISSUE ANCHORING Sanwei Liu, Sangwook Chu, George E. Bani, Luke A. Beardslee, and Reza Ghodssi University of Maryland, USA
- S-155 DIGITAL LIGHT PROCESSING (DLP) 3D PRINTING OF MILLIMETER-SCALE HIGH-ASPECT RATIO (HAR) STRUCTURES EXCEEDING 100:1 Miguel Tirado, Avra Kundu, Laurene Tetard, and Swaminathan Rajaraman University of Central Florida, USA
- M-156 RAPID PROTOTYPING OF MICROACTUATORS BY INTEGRATING 3D PRINTED POLYMERIC STRUCTURES WITH NITI THIN FILM Carnilo Velez¹, Sukjun Kim¹, Mahnoush Babaei¹, Dinesh K. Patel¹, Cory Knick², Gabriel Smith², and Sarah Bergbreiter¹ ¹ Carnegie Mellon University, USA and ² Army Research Laboratory (ARL), USA

Materials, Fabrication and Packaging for Generic MEMS & NEMS

Generic MEMS & NEMS Manufacturing Techniques

- T-157 3D NANOSCALE CHIRAL HELIXES FABRICATED BY FOCUSED HELIUM ION BEAM MANUFACTURING PROCESS Shengxiao Jin, Zhuojie Chen, Xiaoyu Chen, Rui Zhu, Jia Zhu, Yun Huang, Jun Xu, and Wengang Wu Peking University, CHINA
- S-158 A NOVEL FABRICATION METHOD OF GRAPHENE WRINKLE-INDUCED SUPERHYDROPHOBIC SURFACE FOR FLEXIBLE MICRO/NANO SENSORS Kai-Ming Hu, Wei-Lang Zhou, Xue-Song Jiang, and Wen-Ming Zhang Shanghai Jiao Tong University, CHINA
- M-159 AN EXPERIMENT BASED DAMAGE PROFILE FUNCTION FOR FOCUSED HELIUM ION BEAM PROCESS IN FABRICATION OF MICRO/NANO STRUCTURES Tianyang Shao, Qianhuang Chen, Yan Xing, Xiaohui Lin, Chen Fang, and Qing Chai Southeast University, CHINA
- T-160 AN ORIGAMI-STRUCTURED FLEXIBLE ELECTRONIC SUBSTRATE WITH FACES PARALLEL TO TARGET-OF-ATTACHMENT SURFACES Hiroki Yasuga¹, Atsushi Eda¹, Kai Suto², Tomohiro Tachi², and Eiji Iwase¹ ¹Waseda University, JAPAN and ²University of Tokyo, JAPAN
- S-161 ATOMIC STRUCTURE METHOD FOR THE CALCULATION OF ANISOTROPIC WET ETCHING RATE OF SAPPHIRE CRYSTAL Guorong Wu, Yan Xing, Chen Fang, Jiabao Yao, and Xiaohui Lin Southeast University, CHINA

	Generic MEMS & NEMS Manufacturing Techniques
M-162	DEMONSTRATING FULL INTEGRATION PROCESS FOR ELECTROACTIVE POLYMER MICROTRANSDUCERS TO REALIZE SOFT MICROCHIPS Laureline Seurre ¹ , Kätlin Rohtlaid ² , Giao T.M. Nguyen ² , Caroline Soyer ¹ , Sofiane Ghenna ¹ , Sébastien Grondel ¹ , Frédéric Vidal ² , Barthélemy Cagneau ³ , Cédric Plesse ² , and Eric Cattan ¹ ¹ University Polytechnique Hauts-de-France, FRANCE, ² Université de of Cergy-Pontoise, FRANCE, and ³ Université de Versailles, FRANCE
T-163	DIFFRACTION LITHOGRAPHY FOR 3-D MICRONEEDLE FABRICATION Jun Ying Tan, Myunhwan Ahn, Hassan Al-Thuwaini, Seong-O Choi, and Jungkwun "JK" Kim <i>Kansas State University, USA</i>
S-164	DIRECT FABRICATION OF PEGDA MICRO SUCTION CUP ARRAY USING INCLINED/ROTATING MIRROR EXPOSURE SYSTEM Takumi Sugimoto and Hidetoshi Takahashi Keio University, JAPAN
M-165	DIRECT TRANSFER OF NANOPATTERNED FUNCTIONAL MATERIALS ONTO TEXTILE SUBSTRATE FOR OPTICAL AND SENSING APPLICATIONS Jiwoo Ko ^{1,2} , Jun-ho Jeong ² , and Inkyu Park ¹ ¹ Korea Advanced Institute of Science and Technology (KAIST), KOREA and ² Korea Institute of Machinery & Materials (KIMM), KOREA
T-166	FABRICATION OF AL-BASED SUPERCONDUCTING HIGH-ASPECT RATIO TSVs FOR QUANTUM 3D INTEGRATION Juan A. Alfaro-Barrantes ^{1,3} , Massimo Mastrangeli ¹ , David J. Thoen ¹ , Juan Bueno ^{1,2} , Jochem Baselmans ^{1,2} , and Pasqualina M. Sarro ¹ ¹ Delft University of Technology, NETHERLANDS, ² Netherlands Institute for Space Research, NETHERLANDS, and ³ Instituto Tecnológico de Costa Rica, COSTA RICA
S-167	FABRICATION OF NANOPOROUS MEMBRANES FOR KNUDSEN PUMP USING GLANCING ANGLE DEPOSITION Chuang Qu, Bruce Alphenaar, Shamus McNamara, and Kevin Walsh University of Louisville, USA
M-168	FUNCTIONAL ELASTOMER FOR FLEXIBLE ELECTRONICS: LIGHT EMITTING DEVICE AND GAS SENSOR Atsushi Takei, Shiho Tsukamoto, Yusuke Komazaki, Yuichi Watanabe, Yasuyuki Kusaka, and Manabu Yoshida Advanced Industrial Science and Technology (AIST), JAPAN
T-169	AWARD NOMINEE* LARGE-SCALE INTEGRATION OF 2D MATERIAL HETEROSTRUCTURES BY ADHESIVE BONDING Arne Quellmalz ¹ , Xiaojing Wang ¹ , Stefan Wagner ² , Simon Sawallich ^{3,4} , Max C. Lemme ^{2,4} , Kristinn B. Gylfason ¹ , Niclas Roxhed ¹ , Göran Stemme ¹ , and Frank Niklaus ¹ ¹ KTH Royal Institute of Technology, SWEDEN, ² AMO GmbH, GERMANY, ³ Protemics GmbH, GERMANY, and ⁴ RWTH Aachen University, GERMANY
М	aterials, Fabrication and Packaging for Generic MEMS & NEMS
	Materials for MEMS & NEMS
S-170	AWARD NOMINEE* "COAT & POP": ON-SUBSTRATE TWO-STEP COMPOSITION PATTERNING METHOD OF LIQUID METAL ALLOYS FOR FLEXIBLE DEVICES Romain David and Norihisa Miki Keio University, JAPAN

	Materials for MEMS & NEMS
M-171	A FIBER-Si ₃ N ₄ COMPOSITE NANOFOREST WITH HIGH 7.6 TO 11.6µm ABSORPTION FOR MEMS INFRARED SENSORS Chenchen Zhang ^{1,2} , Haiyang Mao ^{2,3} , Meng Shi ² , Jijun Xiong ¹ , Kewen Long ⁴ , and Dapeng Chen ^{2,3} ¹ North University of China, CHINA, ² Chinese Academy of Sciences (CAS), CHINA, ³ Wuxi Internet of Things Innovation Center Co. Ltd., CHINA, and ⁴ Foshan Chuandong Magnetic Electronic, CHINA
T-172	A HIGH-Q 30nm-THICK MFM RESONATOR USING FERROELECTRIC HAFNIUM ZIRCONIUM OXIDE Mayur Ghatge, Glen Walters, Toshikazu Nishida, and Roozbeh Tabrizian University of Florida, USA
S-173	AN EFFECT OF A NEEDLE ELECTRODE FOR THE OHMIC CONTACT BETWEEN AN ELECTRODE AND LIQUID METAL DROPLET IN ELECTRICAL SWITCHING Fuminari Mori, Akiya Hirata, Yugo Kakehi, and Satoshi Konishi <i>Ritsumeikan University, JAPAN</i>
M-174	BIDIRECTIONAL FREQUENCY TUNING OF VANADIUM DIOXIDE (V0₂) MICROSTRING RESONATOR BY OPTOTHERMAL EXCITATION Syed A. Bukhari ¹ , Ankur Goswami ² , Ryan McGee ³ , Rosmi Abraham ¹ , Hyun Joong Chung ¹ , Dale Hume ⁴ , and Thomas Thundat ⁵ ¹ University of Alberta, CANADA, ² Thermtest Instruments, CANADA, ³ Indian Institute of Technology Delhi, INDIA, ⁴ Texas Instruments, USA, and ⁵ State University, Buffalo, USA
T-175	HYBRID MEMRISTIVE SILK DEVICES FOR MULTILEVEL INFORMATION ENCRYPTION AND DECRYPTION Long Sun ^{1,2} , Zhitao Zhou ¹ , and Tiger H. Tao ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA
S-176	IMPACT OF X-RAY RADIATION ON GaN/AIN MEMS STRUCTURE AND GaN HEMT GAUGE FACTOR RESPONSE Ji-Tzuoh Lin ¹ , Peng Wang ² , Pranoy Shuvra ¹ , Shamus McNamara ¹ , Mike McCurdy ² , Jim Davidson ² , Kevin Walsh ¹ , Mike Alles ² , and Bruce Alphenaar ¹ ¹ University of Louisville, USA and ² Vanderbilt University, USA
M-177	AWARD NOMINEE* ULTRAFAST AND INEXPENSIVE MICROFABRICATION OF FLEXIBLE ELECTRODES FOR NEURAL RECORDING/STIMULATION BASED ON DC ELECTROPHORESIS DEPOSITION AND NANO-TITANIUM DIOXIDE Zhaoling Huang ^{1,2} , Qi Zeng ¹ , Jinjiang Huang ³ , Shuijie Qin ² , and Tianzhun Wu ¹ ¹ Chinese Academy of Sciences (CAS), CHINA, ² Guizhou University, CHINA, and ³ Shenzhen CAS Envision Medical Technology Co. Ltd., CHINA
Ma	aterials, Fabrication and Packaging for Generic MEMS & NEMS
	Packaging & Assembly
T-178	A NOVEL VACUUM PACKAGING PROCESS USING SPUTTERED COPPER LAYER AS NON-EVAPORABLE GETTER ACTIVATED BY MICROWAVE Binbin Pei ^{1,2} , Chaozhan Ye ^{1,2} , Ke Sun ¹ , Peng Zhong ^{1,2} , Tingting Yu ^{1,2} , Heng Yang ¹ , and Xinxin Li ¹ ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA
S-179	CMOS COMPATIBLE TSV PROCESS WITH POST-CMOS THERMOMIGRATION REFILLING OF AU-SI EUTECTIC ALLOY Peng Zhong ^{1,2} , Binbin Pei ^{1,2} , Tingting Yu ^{1,2} , Chuanguo Dou ¹ , Heng Yang ¹ , and Xinxin Li ¹ ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA

Packaging & Assembly	
M-180	MEMS-BASED "TOUCH FEELING SCANNER" FOR QUANTITATIVE EVALUATION OF FINGERTIP SENSATION Yoshihiro Nishida ¹ , Kazuki Watatani ^{1,3} , Kyohei Terao ¹ , Fusao Shimokawa ¹ , Kazutami Arimoto ^{2,3} , and Hidekuni Takao ^{1,3} ¹ Kagawa University, JAPAN, ² Okayama Prefectural University, JAPAN, and ³ Japan Science and Technology Agency (JST), JAPAN
T-181	RESEARCH OF WAFER-LEVEL VACUUM PACKAGING BASED ON TGV TECHNOLOGY FOR MEMS DEVICES Yunbin Kuang, Zhanqiang Hou, Ming Zhuo, Qiang Xu, Qingsong Li, Bin Xiao, Heng Shan, Dingbang Xiao, and Xuezhong Wu National University of Defense Technology, CHINA
S-182	SELF-FOLDING ACUTE-ANGLE ORIGAMI DRIVEN BY SURFACE BENDING FORCE Takuya Uchida ¹ , Hiroki Yasuga ² , Tomohiro Tachi ³ , Eiji Iwase ² , and Hiroaki Onoe ¹ ¹ Keio University, JAPAN, ² Waseda University, JAPAN, and ³ Tokyo University, JAPAN
M-183	SILICON MIGRATION SEAL FOR WAFER-LEVEL VACUUM ENCAPSULATION Yukio Suzuki ¹ , Victor Dupuit ^{1,2} , Toshiya Kojima ¹ , Hirotaka Suzuki ¹ , and Shuji Tanaka ¹ ¹ Tohoku University, JAPAN and ² INSA Lyon, FRANCE
	Micro- & Nanofluidics
	Biological and Medical Microfluidics and Nanofluidics
T-184	3D MICROFLUIDIC DEVICE FOR PERFUSION CULTURE OF SPHEROIDS Keigo Nishimura, Minghao Nie, and Shoji Takeuchi <i>University of Tokyo, JAPAN</i>
S-185	96-WELL FORMAT-BASED MICROFLUIDIC PLATFORM FOR AN IN VITRO MULTIPLE MICRO-ORGAN NETWORK Chaewon Jin, Jinyoung Kim, and Hongsoo Choi Daegu Gyeongbuk Institute of Science and Technology (DGIST), KOREA
M-186	A COMPACT MEMS CHIP FOR A RAPID AND HIGHLY ACCURATE PICOLITER CALORIMETRY Sheng Ni ¹ , Hanliang Zhu ² , Pavel Neuzil ^{2,3} , and Levent Yobas ¹ ¹ Hong Kong University of Science and Technology, HONG KONG, ² Northwestern Polytechnical University, CHINA, and ³ Brno University of Technology, CZECH REPUBLIC

T-187 A MICROFLUIDIC CHIP FOR CIRCULATING TUMOR CELLS RNA SEQUENCING AT SINGLE CELL LEVEL Fanghao Shi^{1,2}, Fei Jia^{1,2}, Weikai Zhang³, and Zewen Wei³ ¹National Center for Nanoscience and Technology, CHINA, ²University of Chinese Academy of Sciences (UCAS), CHINA, and ³Beijing Institute of Technology, CHINA

S-188 AN INTEGRATED MICROFLUIDIC SYSTEM FOR FAST ISOLATION OF BACTERIA IN HUMAN WHOLE BLOOD FOR DIAGNOSIS OF SEPSIS Yen-Ling Fang¹, Wen-Bin Lee¹, Chih-Hung Wang¹, Chun-Chih Chien², Huey-Ling You², Mel S. Lee², and Gwo-Bin Lee¹ ¹National Tsing Hua University, TAIWAN and ²Kaohsiung Chang Gung Memorial Hospital, TAIWAN

	Biological and Medical Microfluidics and Nanofluidics
M-189	BIDIRECTIONAL CELL SLIDING ON ACTIVE TRACKS FOR HIGH THROUGHPUT DIELECTROPHORETIC CELL SORTING IN CONTINUOUS-FLOW Xiaofeng Nie, Ziheng Liang, Youyu Lu, Yao Cai, Chaomin Zhang, Duli Yu, and Xiaoxing Xing Beijing University of Chemical Technology, CHINA
T-190	BUBBLE-ASSISTED <i>IN SITU</i> RE-FORMATION OF ARTIFICIAL BILAYER Izumi Hashimoto ¹ , Hirotaka Sugiura ² , Toshihisa Osaki ² , Tetsuya Yamada ² , Hisatoshi Mimura ² , Norihisa Miki ¹ , and Shoji Takeuchi ^{2,3} ¹ Keio University, JAPAN, ² Kanagawa Institute of Industrial Science and Technology, JAPAN, and ³ University of Tokyo, JAPAN
S-191	CO-CULTURE OF A BRAIN ORGANOID DERIVED FROM HUMAN IPSCS AND VASCULATURE ON A CHIP Yohei Isshiki ¹ , Taikopaul Kaneko ¹ , Atsushi Tamada ² , Keiko Muguruma ² , and Ryuji Yokokawa ¹ ¹ Kyoto University, JAPAN and ² Kansai Medical University, JAPAN
M-192	DEVELOPMENT OF <i>IN VITRO</i> MICROFLUIDIC CIRCULATORY SYSTEM Ping-Liang Ko ¹ , Tse-Ang Lee ¹ , Heng-Hua Hsu ^{1,2} , Wei-Hao Liao ¹ , and Yi-Chung Tung ¹ ¹ Academia Sinica, TAIWAN and ² National Tsing Hua University, TAIWAN
T-193	ELECTROOSMOTIC MICROPUMP ARRAY FILM USING BIOFUEL CELL Toshiro Yamanaka and Fumihito Arai Nagoya University, JAPAN
S-194	FREEZE-DRIED CELL-FREE PROTEIN EXPRESSION SYSTEM IN MICROCHAMBERS TOWARD POINT-OF-CARE DIAGNOSTICS Taishi Tonooka Kyoto Institute of Technology, JAPAN
M-195	SINGLE-CELL ELECTROPORATION AND REAL-TIME ELECTRICAL MONITORING ON A MICROFLUIDIC CHIP Yifei Ye ^{1,2} , Wenjie Zhao ^{1,2} , Jian Chen ¹ , Jie Cheng ^{1,2} , Xinyu Wei ^{1,2} , Lingqian Zhang ¹ , Haiyang Mao ¹ , Mingxiao Li ¹ , Yang Zhao ¹ , and Chengjun Huang ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA
T-196	HIGH VELOCITY DIELECTROPHORETIC CELL SEPARATION USING CONTINUOUSLY EXTENDED SIDEWALL ELECTRODE FEATURING UNDERCUT PROFILE Chaomin Zhang, Duli Yu, and Xiaoxing Xing Beijing University of Chemical Technology, CHINA
S-197	THE MICROFLUIDIC MICROWELL DEVICE INTEGRATING SURFACE

Cheng-Chieh Liao, Hsiu-Kang Huang, Yi-Zih Chen, and Nien-Tsu Huang National Taiwan University, TAIWAN

AND IN SITU ANTIBIOTIC SUSCEPTIBILITY TEST

Micro- & Nanofluidics

Generic Microfluidics & Nanofluidics

M-198 ACOUSTICALLY EXCITED MICRO MASS TRANSPORT FOR REMOTELY DOSE-CONTROLABLE DRUG RELEASING Fang-Wei Liu and Sung Kwon Cho University of Pittsburgh, USA

Generic Microfluidics & Nanofluidics	
T-199	BIDIRECTIONAL MAGNETIC POLYMER MEMBRANE ACTUATORS INTEGRATED INTO THERMOPLASTIC MICROFLUIDICS Chelsey E. Currie and Bonnie L. Gray Simon Fraser University, CANADA
S-200	DEVELOPMENT OF OPEN MICROFLUIDIC DEVICES FOR WATER-IN-OIL TWO-PHASE FLOW Linjue Wang, Chenqi Niu, Chong Zhang, and Zheyao Wang Tsinghua University, CHINA
M-201	ELECTROLYTIC GENERATION OF TRAPPED NANOBUBBLES VIA NUCLEATION CORE WITH PICOLITER PRECISION Eugene Yoon and Ellis Meng University of Southern California, USA
T-202	NANOPARTICLE SYNTHESIS USING AN ELECTROHYDRODYNAMIC MICROMIXER Paresa Modarres and Maryam Tabrizian McGill University, CANADA
	Micro- & Nanofluidics
Integra	ted/Embedded Microfluidics and Nanofluidic Systems & Platforms
M-203	A CYANOBACTERIAL ARTIFICIAL LEAF FOR SIMULTANEOUS CARBON DIOXIDE REDUCTION AND BIOELECTRICITY GENERATION Lin Liu and Seokheun Choi State University of New York, Binghamton, USA
T-204	A FLOW-TYPE NANOPARTICLE GENERATION SYSTEM USING A MICROCHANNEL DEVICE FOR GENERATING AND QUENCHING DROPLETS Nozomu Fujimoto ¹ , Takefumi Kanda ¹ , Kentaro Omori ¹ , Naohiro Tahara ¹ , Yusaku Sakata ¹ , Norihisa Seno ¹ , Shuichi Wakimoto ¹ , Yoshiaki Nakazaki ² , and Takafumi Otoyama ² ¹ Okayama University, JAPAN and ² Nano Cube Japan Company Limited, JAPAN
S-205	A SEAL-FREE VALVELESS DIGITAL PCR CHIP SUPPORTED WITH A HIGH-PRESSURE WATER CIRCULATION SYSTEM Tiegang Xu ¹ , Lei Wu ¹ , Xuefeng Wang ¹ , Xiaoyue Zhu ² , Jianzhong Chen ¹ , Fanglan Yao ¹ , Hongbo Zhou ¹ , and Xinxin Li ¹ ¹ Chinese Academy of Sciences (CAS), CHINA and ² Fujian Agriculture and Forestry University, CHINA
M-206	AN AUTOMATED MICROFLUIDIC SYSTEM FOR OPTIMIZATION OF APTAMER SELECTION BY USING CANCER TISSUE SAMPLES Cheng-Sheng Lin, Yi-Cheng Tsai, and Gwo-Bin Lee National Tsing Hua University, TAIWAN
T-207	DROPLET SOLUTION EXCHANGE PLATFORM UTILIZING DIELECTROPHORETIC FORCE Can Huang, Song-I Han, and Arum Han Texas A&M University, USA
S-208	KINETICS STUDY AND ONLINE MONITORING OF <i>IN-SITU</i> GROWTH OF ZINC-OXIDE NANOWIRE ARRAYS WITHIN MICROFLUIDIC CHAMBERS Mazen Erfan ¹ , Lan Gao ¹ , Martine Gnambodoe-Capochich ¹ , Elyes Nefzaoui ¹ , Yasser M. Sabry ² , Diaa Khalil ² , Yamin Leprince-Wang ¹ , and Tarik Bourouina ¹ ¹ Universite Paris-Est, FRANCE and ² Ain-Shams University, EGYPT

Integrated/Embedded Microfluidics and Nanofluidic Systems & Platforms

M-209 MASSIVE INTEGRATION OF LIGHT DRIVING GEL ACTUATOR FOR SINGLE CELL MANIPULATION

Yuha Koike¹, Hiroki Wada¹, Yoshiyuki Yokoyama², and Takeshi Hayakawa¹ ¹*Chuo University, JAPAN and*²*Toyama Industrial Technology Research and Development Center, JAPAN*

T-210 RAPID AND CONTROLLABLE DIGITAL MICROFLUIDIC HEATING USING ALN/SI RAYLEIGH SURFACE ACOUSTIC WAVES Yong Wang¹, Qian Zhang¹, Dongyang Chen¹, Ran Tao², Yangyang Guan¹, Zhonggui Xu³, Yongqing Fu², and Jin Xie¹ ¹Zhejiang University, CHINA, ²University of Northumbria, UK, and ³Hubei Minzu University, CHINA

Micro- & Nanofluidics

Manufacturing for Micro- and Nanofluidics

S-211 BIOINSPIRED ULTRAFAST TRAPPING OF MICROBEAD ARRAY FOR DIGITAL IMMUNOASSAY Zhiting Peng, Boshi Jiang, and Tianzhun Wu *Chinese Academy of Sciences (CAS), CHINA*

- M-212 MASSIVE PARALLEL NEMS FLOW RESTRICTION FABRICATED USING SELF-ALIGNED 3D-CRYSTALLOGRAPHIC NANOLITHOGRAPHY Chris P. van Kampen¹, Erwin J. Berenschot¹, Gert-Jan Burger², Roald M. Tiggelaar¹, Remco G. Sanders¹, Han G. Gardeniers¹, and Niels R. Tas¹ ¹University of Twente. NETHERLANDS and ²OMicro. NETHERLANDS
- T-213 NORMALLY CLOSED MICROFLUIDIC VALVES WITH MICROSTRUCTURED VALVE SEATS: A STRATEGY FOR INDUSTRIAL MANUFACTURING OF THERMOPLASTIC MICROFLUIDICS WITH MICROVALVES Kebin Li, Keith Morton, Matthew Shiu, Karine Turcotte, L

Kebin Li, Keith Morton, Matthew Shiu, Karine Turcotte, Luke Lukic, Gaetan Veilleux, Lucas Poncelet, and Teodor Veres *National Research Council Canada, CANADA*

S-214 POLYMER MICRO ATOMIZER FOR CONE JET MODE ELECTROSPRAY OF WATER

Ji-hun Jeong¹, Hyoungsu Choi¹, Jinyoung Choi², and Seung S. Lee¹ ¹Korea Advanced Institute of Science and Technology (KAIST), KOREA and ²Dongshin University, KOREA

Micro- & Nanofluidics

Materials for Micro & Microfluidics

M-215 A DROPLET PLATFORM BASED ON PARAHYDROPHOBIC NANOFORESTS FOR ON-SITE ION DETECTIONS Bo Gui^{1,2}, Meng Shi¹, Haiyang Mao^{1,3}, Haiyang Mao¹, Kewen Long⁴, and Dapeng Chen^{1,3} ¹ Chinese Academy of Sciences (CAS). CHINA ² University of Chi

¹Chinese Academy of Sciences (CAS), CHINA, ²University of Chinese Academy of Sciences (UCAS), CHINA, ³Wuxi Internet of Things Innovation Center Co. Ltd., CHINA, and ⁴Foshan Chuandong Magnetic Electronics, CHINA

T-216 PLASMA-TREATED PDMS AS INTRINSICALLY NON-WETTING SURFACE FOR GALLIUM-ALLOY LIQUID METAL MICROFLUIDICS Sochia Pachu and Joang Roma Least

Sachin Babu and Jeong-Bong Lee University of Texas, Dallas, USA

	Micro- & Nanofluidics	
	Other	
C 017		
5-217	SURFACE ACOUSTIC WAVE DEVICES Yong Wang ¹ , Ran Tao ² , Qian Zhang ¹ , Dongyang Chen ¹ , Xuying Chen ¹ , Dongsheng Li ¹ , Yongqing Fu ² , and Jin Xie ¹ ¹ Zhejiang University, CHINA and ² Northumbria University, UK	
M-218	CENTRIFUGATION OF MICROPARTICLES INSIDE A SESSILE DROPLET ON A MICROMACHINED SILICON CHIP USING ACOUSTIC TWEEZERS Jingui Qian, Habiba Begum, and Joshua E-Y Lee <i>City University of Hong Kong, HONG KONG</i>	
T-219	COMPREHENSIVE ANALYSIS AND CONTROL OF DIFFUSIOOSMOSIS-DRIVEN IONIC TRANSPORT THROUGH INTERCONNECTED NANOPOROUS MEMBRANES Jongwan Lee', Kyunghun Lee', Cong Wang ² , Dogyeong Ha ¹ , Jungyul Park ² , and Taesung Kim ¹ ¹ Ulsan National Institute of Science and Technology (UNIST), KOREA and ² Sogang University, KOREA	
S-220	MEMS MICROMIXER FOR ULTRA FAST MIXING OF FLUIDS Matthew A. Moyet, Muhammad R. Hossen, Austin Ward, Oliver Adams, Michael D. Mason, Scott D. Collins, and Rosemary L. Smith University of Maine, USA	
M-221	THE PERFORMANCE OF MICRO-FABRICATED GAS CHROMATOGRAPHIC COLUMNS WITH DIFFERENT NUMBER OF SERPENTINE TURNS Qiyong Liu ¹ , Fei Feng ^{1,2} , Xuelei Yang ¹ , Bin Zhao ¹ , Yangyang Zhao ¹ , Haimei Zhou ¹ , Guiyang Zhang ¹ , and Xinxin Li ¹ ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA	
	Optical, RF and Electromagnetics for MEMS	
DC & L	ow Frequency Magnetic & Electrochemical Components & Systems	
T-222	MECHANICAL TUNING OF MAGNETIC ANISOTROPY Mustafa Mert Torunbalci and Sunil Ashok Bhave Purdue University, USA	
	Optical, RF and Electromagnetics for MEMS	
Free S	pace Optical Components & Systems (Displays, Lenses, Detectors)	
S-223	A ROBUST COMPACT LENS SCANNER WITH LARGE TUNABLE RANGE Liang Zhou ¹ , Xiaomin Yu ^{1,2} , and Huikai Xie ¹ ¹ University of Florida, USA and ² Chengdu University of Information Technology, CHINA	
M-224	DESIGN AND FABRICATION OF MICRO-LED DISPLAY WITH SAPPHIRE MICRO-REFLECTOR ARRAY Chengshiun Liou ¹ , Mingyu Hsieh ¹ , FuChi Shih ¹ , Yuanyuan Huang ¹ , Zihsong Hu ¹ , Chingfu Tsou ¹ , and Weileun Fang ² ¹ Feng Chia University, TAIWAN and ² National Tsing Hua University, TAIWAN	
T-225	ELECTROSTATIC MICRO MIRROR ARRAY WITH BATCH-FABRICATED TORSION BEAM OF SILICON NANOWIRE Tomoya Nakamura, Yoshikazu Hirai, Osamu Tabata, and Techinuki Tenchina	

Kyoto University, JAPAN

Free Space Optical Components & Systems (Displays, Lenses, Detectors)

- MICROFLUIDIC REFLECTIVE DISPLAY WITH PRIMARY S-226 COLOR SUB-PIXELS Jumpei Muramatsu and Hiroaki Onoe Keio University, JAPAN
- M-227 S/N IMPROVEMENT OF NANO-CUBOID PHOTODETECTOR USING COMBINATION OF SMALL DEVICE AREA AND CONVERGING LENS Kazuki Kobayashi and Tetsuo Kan University of Electro-Communications, JAPAN

Optical, RF and Electromagnetics for MEMS

Manufacturing for Electromagnetic Transducers

- T-228 A NOVEL FABRICATION PROCESS OF NANO-CAVITY COUPLED PLASMONIC STRUCTURES FOR COLORMETRIC SENSING Jia Zhu¹, Yun Huang¹, Kenan Zhang^{1,2}, Guanzhou Lin¹, and Wengang Wu¹ ¹Peking University, CHINA and ²Fuzhou University, CHINA
- S-229 TORSIONAL MEMS MAGNETOMETER WITH VERTICALLY STAGGERED COMBS FOR IN-PLANE MAGNETIC FIELD SENSING Hengmao Liang^{1,2}, Song Liu^{1,2}, and Bin Xiong¹ ¹Chinese Academy of Sciences (CAS), CHINA and ²University of Chinese Academy of Sciences (UCAS), CHINA

Optical, RF and Electromagnetics for MEMS

Materials for Electromagnetic Transducers

M-230 MAGNETOPHORESIS ASSISTED CAPILLARY ASSEMBLY OF COBALT NANORODS: A NEW SOURCE OF PERMANENT MAGNETS FOR MEMS Pierre Moritz^{1,2}, Fabrice Mathieu¹, David Bourrier¹, Daisuke Saya¹, Antoine Gonon², Liviu Nicu¹, Lise-Marie Lacroix², Guillaume Viau², and Thierry Leichle¹ ¹LAAS-CNRS. FRANCE and ²LPCNO. FRANCE

T-231 PRECISE FABRICATION OF GAP-TUNABLE NANOANTENNAS FOR PLASMON-ENHANCED SPECTROSCOPY AND BIOSENSING Yun Huang, Zhuojie Chen, Shengxiao Jin, Jia Zhu, Bocheng Yu, Wengang Wu, Rui Zhu, and Jun Xu Peking University, CHINA

Optical, RF and Electromagnetics for MEMS

MEMS for Timing & Frequency Control

- S-232 AUTO-RESONANCE - A NEW PARADIGM FOR DRIVING LINEAR AND NONLINEAR ELECTROSTATIC RESONATORS Danny H. Kassie and David Elata Technion - Israel Institute of Technology, ISRAEL
- AWARD NOMINEE* M-233 EXPLORING THE PARAMETRIC ENERGY TRANSFER IN A MULTI-MODE PIEZOELECTRIC RESONATOR WITH NONLINEAR HARMONICS Chun-You Liu, Gayathri Pillai, and Sheng-Shian Li National Tsing Hua University, TAIWAN
- T-234 FREQUENCY STABILIZATION IN AN ENCAPSULATED HIGH-Q MICROMECHANICAL RESONATOR VIA INTERNAL RESONANCE Jun Yu¹, Hyun-Keun Kwon², Gabrielle D. Vukasin², Thomas W. Kenny², and Hanna Cho¹ ¹Ohio State University, USA and ²Stanford University, USA

	MEMS for Timing & Frequency Control
S-235	INJECTION LOCKING TYPE 1/2 FREQUENCY DIVIDER EMPLOYING PIEZOELECTRIC MEMS RESONATOR FOR SIMPLIFYING THE MICRO ATOMIC CLOCK SYSTEM Motoaki Hara ¹ , Yuichiro Yano ¹ , Masatoshi Kajita ¹ , Shinsuke Hara ¹ , Akifumi Kasamatsu ¹ , Hiroyuki Ito ² , and Tetsuya Ido ¹ ¹ National Institute of Information and Communications Technology, JAPAN and ² Tokyo Institute of Technology, JAPAN
M-236	MICRO-OVEN-CONTROLLED MEMS OSCILLATOR INTEGRATED WITH MICRO-EVAPORATOR FOR FREQUENCY TRIMMING Binbin Pei ^{1,2} , Ke Sun ¹ , Peng Zhong ^{1,2} , Tingting Yu ^{1,2} , Chaozhan Ye ^{1,2} , Heng Yang ¹ , and Xinxin Li ¹ ¹ Chinese Academy of Sciences (CAS), CHINA and ² University of Chinese Academy of Sciences (UCAS), CHINA
T-237	TEMPERATURE HYSTERESIS IN PIEZORESISTIVE MICROCANTILEVERS James M.L. Miller, Ze Zhang, Nicholas E. Bousse, Dusan Coso, Seid Sadat, Hyun-Keun Kwon, Gabrielle Vukasin, Arun Majumdar, and Thomas W. Kenny Stanford University, USA
S-238	THERMAL STABILITY OF DETF MEMS RESONATORS: NUMERICAL MODELLING AND EXPERIMENTAL VALIDATION Valentina Zega ¹ , Andrea Opreni ¹ , Giorgio Mussi ¹ , Hyun-keun Kwon ² , Gabrielle Vukasin ² , Gabriele Gattere ³ , Giacomo Langfelder ¹ , Attilio Frangi ¹ , and Thomas W. Kenny ² ¹ Politecnico di Milano, ITALY, ² Stanford University, USA, and ³ STMicroelectronics, ITALY
M-239	THERMO-ACOUSTIC ENGINEERING OF GAN SAW RESONATORS FOR STABLE CLOCKS IN EXTREME ENVIRONMENTS Afzaal Qamar ¹ , Mayur Ghatge ² , Roozbeh Tabrizian ² , and Mina Rais-Zadeh ^{1.3} ¹ University of Michigan, USA, ² University of Florida, USA, and ³ California Institute of Technology, USA
	Optical, RF and Electromagnetics for MEMS
	Photonic Components & Systems
T-240	ACOUSTICALLY MEDIATED MICROWAVE-TO-OPTICAL CONVERSION ON THIN-FILM LITHIUM NIOBATE Linbo Shao ¹ , Mengjie Yu ¹ , Smarak Maity ¹ , Neil Sinclair ^{1,2} , Lu Zheng ³ , Cleaven Chia ¹ , Amirhassan Shams-Ansari ¹ , Cheng Wang ⁴ , Mian Zhang ¹ , Keji Lai ³ , and Marko Loncar ¹ ¹ Harvard University, USA, ² California Institute of Technology, USA, ³ University of Texas, Austin, USA, and ⁴ City University of Hong Kong, HONG KONG
S-241	CELL TRAPPING AND MECHANICAL STIMULATION IN MICROFLUIDIC SENSOR COMBINED WITH OPTICAL FIBER COMPONENTS Motohide Yoshimi ¹ , Shinya Kumagai ² , Yasutake Ohishi ¹ , and Minoru Sasaki ¹ ¹ Toyota Technological Institute, JAPAN and ² Meijo University, JAPAN
M-242	DIRECT LASER WRITING OF TITANIUM DIOXIDE-LADEN RETINAL CONE PHANTOMS Andrew C. Lamont ^{1,2} , Michael A. Restaino ¹ , Abdullah T. Alsharhan ¹ , Zhoulin Liu ² , Daniel X. Hammer ² , Anant Agrawal ² , and Ryan D. Sochol ¹ ¹ University of Maryland, College Park, USA and ² United States Food & Drug Administration, USA

	Photonic Components & Systems	
T-243	FREQUENCY STABILITY OF STRESS-ENGINEERED NANOMECHANICAL RESONATOR AND ITS CRAMER-RAO LOWER BOUND Mingkang Wang ^{1,2} , Rui Zhang ³ , Diego Perez-Morelo ^{1,2} , Robert Ilic ¹ , Yuxiang Liu ³ , and Vladimir Aksyuk ¹ ¹ National Institute of Standards and Technology (NIST), USA, ² University of Maryland, USA, and ³ Worcester Polytechnic Institute, USA	
S-244	HIGHLY DEFORMABLE OPTOELECTRONICS USING LIQUID METAL Takashi Kozaki, Satoshi Saito, Yota Otsuki, Ryosuke Matsuda, Yutaka Isoda, Takuma Endo, Fumika Nakamura, Takuto Araki, Taichi Furukawa, Shoji Maruo, Masayoshi Watanabe, Kazuhide Ueno, and Hiroki Ota Yokohama National University, JAPAN	
M-245	INTEGRATION OF ALUMINUM NITRIDE MODULATOR AND TEXTILE TRIBOELECTRIC NANOGENERATOR TOWARD SELF-SUSTAINABLE TUNABLE WEARABLE PHOTONICS Bowei Dong, Qiongfeng Shi, Tianyiyi He, Zixuan Zhang, Yiming Ma, Guangya Zhou, and Chengkuo Lee National University of Singapore, SINGAPORE	
T-246	RGB ALL LIQUID-BASED MICROFLUIDIC QUANTUM DOTS LIGHT-EMITTING DIDDES USING DEEP-BLUE LIQUID ORGANIC SEMICONDUCTOR BACKLIGHT Masahiro Kawamura ¹ , Hiroyuki Kuwae ¹ , Takumi Kamibayashi ¹ , Juro Oshima ² , Takashi Kasahara ³ , Shuichi Shoji ¹ , and Jun Mizuno ⁴ ¹ Waseda University, JAPAN, ² Nissan Chemical Corporation, JAPAN, ³ Hosei University, JAPAN, and ⁴ Tokyo University of Science, JAPAN	
	Optical, RF and Electromagnetics for MEMS	
	RF MEMS Components & Systems	
S-247	8.5 GHZ AND 11.5 GHZ ACOUSTIC DELAY LINES USING HIGHER-ORDER LAMB MODES IN LITHIUM NIOBATE THIN FILM Ruochen Lu ¹ , Yansong Yang ¹ , Michael Breen ¹ , Ming-Huang Li ² , and Songbin Gong ¹ ¹ University of Illinois, Urbana-Champaign, USA and ² National Tsing Hua University, TAIWAN	
M-248	A NON-RECIPROCAL LAMB-WAVE DELAY LINE EXPLOITING ACOUSTOELECTRIC EFFECT IN SINGLE CRYSTAL GERMANIUM Faysal Hakim, Mehrdad Ramezani, Sushant Rassay, and Roozbeh Tabrizian University of Florida, USA	
T-249	A NON-RECIPROCAL SURFACE ACOUSTIC WAVE FILTER BASED ON ASYMMETRICAL DELAY LINES AND PARAMETRIC INTERACTIONS José A. Bahamonde and Ioannis Kymissis Columbia University, USA	
S-250	ACOUSTICALLY COUPLED WIDEBAND RF FILTERS WITH BANDWIDTH BECONFIGURABLITY LISING FERBOELECTRIC ALLIMINIUM SCANDIUM	

NITRIDE FILM

Sushant Rassay, Faysal Hakim, Mehrdad Ramezani, and Roozbeh Tabrizian *University of Florida, USA*

M-251 ENHANCED PIEZOELECTRIC AL_{1-X}SC_XN RF-MEMS RESONATORS FOR SUB-6GHZ RF-FILTER APPLICATIONS: DESIGN, FABRICATION AND CHARACTERIZATION

Andreas Bogner^{1,3}, Ruediger Bauder³, Hans-Joerg Timme³, Thomas Forster³, Christian Reccius³, Robert Weigel¹, and Amelie M. Hagelauer² ¹University of Erlangen-Nuremberg, GERMANY, ²University of Bayreuth, GERMANY, and ³Infineon Technologies AG, GERMANY

	RF MEMS Components & Systems
T-252	EPITAXIAL SINGLE-CRYSTAL SCALN ON 4H-SiC FOR HIGH-VELOCITY, LOW-LOSS SAW DEVICES Vikrant J. Gokhale, Brian P. Downey, Matthew T. Hardy, Eric N. Jin, Jason A. Roussos, and David J. Meyer US Naval Research Laboratory, USA
S-253	LONG-RANGE TELEMETRIC SMART ORTHODONTIC BRACKET WITH CMOS-INTEGRATED 3D WIREBONDER-FABRICATED MICROCOILS Julian Hafner ¹ , Ali Moazenzadeh ² , Fabian Heinen ¹ , Miguel Rodriguez ¹ , Ulrike Wallrabe ¹ , and Oliver Paul ¹ ¹ University of Freiburg, GERMANY and ² Voxalytic GmbH, GERMANY
M-254	MICRO-ACOUSTIC QUAD CIRCULATOR WITH SELF-INTERFERENCE CANCELLATION Yao Yu and Matteo Rinaldi Northeastern University, USA
T-255	RECONFIGURABLE N-PATH MEMS FILTER BASED ON THE PERIODIC COMMUTATION OF SINGLE FREQUENCY RESONATORS Giuseppe Michetti, Michele Pirro, Yao Yu, Guofeng Chen, Cristian Cassella, and Matteo Rinaldi Northeastern University, USA
S-256	RECORD-HIGH KT2 EXCEEDING 7.4% THROUGH LOW-IMPEDANCE LITHOGRAPHICALLY DEFINED RESONANT RODS IN ALUMINUM NITRIDE THIN PLATES Xuanyi Zhao, Bernard Herrera, and Cristian Cassella Northeastern University, USA
T-257	SUPER HIGH FREQUENCY SIMPLE PROCESS FLOW CROSS-SECTIONAL LAMÉ MODE RESONATORS IN 20% SCANDIUM-DOPED ALUMINUM NITRIDE Zachary A. Schaffer ¹ , Gianluca Piazza ¹ , Sergey Mishin ² , and Yury Oshmyansky ² ¹ Carnegie Mellon University, USA and ² Advanced Modular Systems, USA
S-258	THIN-FILM LITHIUM NIOBATE ACOUSTIC DELAY LINE OSCILLATORS Ming-Huang Li ^{1,2} , Ruochen Lu ¹ , Tomas Manzaneque ³ , and Songbin Gong ¹ ¹ University of Illinois, Urbana-Champaign, USA, ² National Tsing Hua University, TAIWAN, and ³ Delft University of Technology, NETHERLANDS
M-259	ZNO-ON-DIAMOND RESONATORS WITH NOTCHED THIN-FILM PIEZOELECTRIC INTERDIGITAL TRANSDUCER FOR ENHANCED SIGNAL-TO-NOISE RATIO AND FEEDTHROUGH SUPPRESSION Xu Han, Di Lan, and Jing Wang University of South Florida, USA
	Optical, RF and Electromagnetics for MEMS
	THz MEMS Components & Systems
T-260	MECHANICAL LARGE DEFORMATION 3D CHIRAL THZ METAMATERIAL

IT-260 MECHANICAL LARGE DEFORMATION 3D CHIRAL THZ METAMATERIAL Takuya Kosuge¹, Tetsuo Kan¹, Kuniaki Konishi², Mizuho Matoba², Natsuki Kanda², and Makoto Kuwata-Gonokami² ¹University of Electro-Communications, JAPAN and ²University of Tokyo, JAPAN

Technical Topics on MEMS Products		
Barriers to Commercialization & Research Needs for Future Products		
S-261	A COMPACT MICROCONTROLLER-BASED MEMS RATE INTEGRATING GYROSCOPE MODULE WITH AUTOMATIC ASYMMETRY CALIBRATION Ryunosuke Gando ¹ , Daiki Ono ^{1,2} , Shiori Kaji ¹ , Hiroshi Ota ² , Tetsuro Itakura ¹ , and Yasushi Tomizawa ¹ ¹ Toshiba Corporation, JAPAN and ² Device & System Platform Development Center Co., Ltd., JAPAN	
M-262	LONG-TERM STABILITY IMPROVEMENT OF MICRO-HOTPLATE METHANE SENSOR PRODUCT Ying Chen ^{1,2} , Pengcheng Xu ^{1,2} , Pingping Zhang ³ , and Xinxin Li ^{1,2} ¹ Chinese Academy of Sciences (CAS), CHINA, ² University of Chinese Academy of Sciences (UCAS), CHINA, and ³ Suzhou Huiwen Nanotechnology Co., Ltd., CHINA	
T-263	MONOTHIC INTEGRATION OF PRESSURE PLUS Z-AXIS ACCELERATION COMPOSITE TPMS SENSORS WITH 1.0MM×1.0MM CHIP-SIZE AND 0.09\$/DIE FABRICATION-COST Dan Xue, Jiachou Wang, and Xinxin Li Chinese Academy of Sciences (CAS), CHINA	
	Technical Topics on MEMS Products	
	Fabrication Models for Products	
S-264	H ₂ O VAPOR PLASMA FOR BONDING PDMS WITH VARIOUS MATERIALS Fumiharu Matsuo ¹ , Haruka Oda ² , Fumina Miyake ¹ , Hideo Otsuki ¹ , Shoji Takeuchi ² , and Osamu Tsuji ¹ ¹ Samco Inc., JAPAN and ² University of Tokyo, JAPAN	
M-265	ULTRACOMPACT SILICON WAFER PACKAGING OF DEEP UV LED WITH EXCELLENT COOLING PERFORMANCE AND LIGHT UTILIZATION EFFICIENCY Hirofumi Chiba ¹ , Yukio Suzuki ² , Yoshiaki Yasuda ¹ , Mitsuyasu Kumagai ¹ , Takaaki Koyama ¹ , and Shuji Tanaka ² ¹ Stanley Electric Co., Ltd, JAPAN and ² Tohoku University, JAPAN	
	Technical Topics on MEMS Products	
	Measurement Methods for Product Specs	
T-266	PARTICLE TRACKING OF A COMPLEX MICROSYSTEM IN THREE DIMENSIONS AND SIX DEGREES OF FREEDOM Craig R. Copeland, Craig D. McGray, B. Robert Ilic, Jon Geist, and Samuel M. Stavis National Institute of Standards and Technology (NIST), USA	
	Industry Open Posters	
S-267	THERMO-MECHANICAL SIMULATION OF DIE-LEVEL PACKAGED 3-AXIS MEMS GYROSCOPE PERFORMANCE Arnaud Parent ¹ , Chris Welham ¹ , and Brian Van Dyk ² ¹ Coventor, A Lam Research Company, FRANCE and ² Coventor, A Lam Research Company, USA	
S-268	HOW TO MAKE MEMS DESIGN EASY? Jan E. Mehner ¹ , David Kriebel ² , and Philipp Jan Mehner ² ¹ <i>i-ROM GmbH, GERMANY and</i> ² Chemnitz University of Technology, GERMANY	

Industry Open Posters							
S-269	MEGA-POINTS VIBRATION MAP AND HIGH SPEED 4D DYNAMIC TOPOGRAPHY BY DIGITAL HOLOGRAPHIC MICROSCOPE (DHM®) Shenqi Xie, Jérôme Parent, and Yves Emery Lyncée Tec, SWITZERLAND						
S-270	SILICON PORE OPTICS: MICROTECHNOLOGY ENABLING ATHENA, A NEW GENERATION X-RAY SPACE TELESCOPE Jeroen Haneveld ¹ , Arenda Koelewijn ¹ , Jan-Joost Lankwarden ¹ , Mark Olde Riekerink ¹ , Marko Blom ¹ , Maurice Wijnperle ¹ , Remy Wiertz ¹ , Ronald Start ¹ , Maximilien J. Collon ² , Guiseppe Vacanti ² , Nicolas M. Barrière ² , Boris Landgraf ² , Ramses Günther ² , Ljubiša Babić ² , and David Girou ² ¹ <i>Micronit Microtechnologies B.V., NETHERLANDS and</i> ² <i>cosine, NETHERLANDS</i>						
S-271	HIGH PERFORMANCE NdFeB MICRO-MAGNETS FOR MEMS APPLICATIONS Georgiana I. Groza, Frederico O. Keller, Richard Haettel, Thibaut Devillers, and Nora M. Dempsey CNRS - Institut NEEL/ Université Grenoble Alpes, FRANCE						
S-272	BONDING OF MICROFLUIDICS Hirokazu Terai and Atsushi Tsuchihashi Samco, Inc., JAPAN						
S-273	ION BEAM TRIMMING FOR MEMS APPLICATIONS (ALN, SOI, POI) Marcel Demmler, Thomas Tonert, Carsten Schulze, Thoralf Dunger, Matthias Nestler, and Michael Zeuner scia Systems GmbH, GERMANY						
S-274	MEMS MANUFACTURING TECHNOLOGIES TO CARRY MEMS INTO THE FUTURE David Springer SPTS Technologies, USA						
S-275	RAPID MEMS CHARACTERIZATION WITH ADVANCED MULTI-FREQUENCY TECHNIQUES Kivanç Esat and Romain Stomp Zurich Instruments, SWITZERLAND						

Vancouver, BC

J-MEMS Extended Conference Papers

Ladies and Gentlemen,

J-MEMS invites authors of MEMS 2020 to submit extended conference papers.

A newly submitted paper must contain 50% or greater new and substantive material, and it must include the conference presentation as its first cited reference. Novelty is justified best by new experimental results, enhanced modeling and characterization or further system integration efforts. In order to aid the review process, authors submitting papers based upon conference presentations must upload a copy of the conference paper as an appendix to a newly submitted paper.

Full manuscripts should be submitted electronically through IEEE's ScholarOne: https://mc.manuscriptcentral.com/jmems

Be sure to select "Enhanced Conference Presentation" as the Manuscript Type.

Author guidelines for submissions to J-MEMS are available online:

https://eds.ieee.org/publications/journal-ofmicroelectromechanical-systems/informationfor-authors

Inquiries can be directed to Lisa Jess, IEEE Publishing Operations, Peer Review Support, <u>I.jess@ieee.org</u>

Gianluca Piazza Editor-in-Chief of J-MEMS

						Floo	or Plan not to scale.
S-273 S-274 S-275	NOMINEES				AWARD		POSTER INFORMATION, MESSAGE & JOB BOARD
S-272 M-221 S-271 T-222 S-270 S-223 S-269 M-224 S-267 S-226 T-266 M-227 M-265 T-228	S-220 S-205 T-204 M-189 T-219 M-206 M-203 T-190 M-218 T-207 T-202 S-191 S-217 S-208 M-201 M-192 T-216 M-209 S-200 T-193 M-215 T-210 T-199 S-194 S-214 S-211 M-198 M-195 T-213 M-212 S-197 T-196	S-188 S-137 T-187 M-138 M-186 T-139 S-185 S-140 T-184 M-141 M-183 T-142 S-182 S-143 T-181 M-144	21 22 20 23	T-136 M-085 M-135 T-086 S-134 S-087 T-133 M-088 S-132 T-089 T-131 S-090 M-130 M-091 S-129 T-092	S-084 T-033 T-083 S-034 M-082 M-035 S-081 T-036 T-080 S-037 M-079 M-038 S-078 T-039 T-077 S-040	M-032 M-017 S-031 T-018 T-030 S-019 M-029 M-020 S-028 T-021 T-027 S-022 M-026 M-023 S-025 T-024	S-016 S-001 T-015 M-002 M-014 T-003 S-013 S-004 T-012 M-005 M-011 T-006 S-010 S-007 T-009 M-008
S-264 S-229 T-263 M-230 M-262 T-231 S-261 S-232 T-260 M-233 M-259 T-234 S-258 S-235 T-257 M-236	5 10 4 11	M-180 S-179T-145 S-146T-178 M-177M-147 T-148S-176 T-175S-149 M-150M-174 S-173T-151 S-152	19 24 18 25	T-128 S-093 M-127 M-094 S-126 T-095 T-125 S-096 M-124 M-097 S-123 T-098 T-122 S-099 M-121 M-100	M-076 S-075T-041 S-042T-074 M-073M-043 T-044S-072 T-071S-045 M-046M-070 S-069T-047 S-048	33 38 32 39	TT-2 TT-1 44
S-256 T-237 T-255 S-238 M-254 M-239 S-253 T-240 T-252 S-241 M-251 M-242 S-250 T-243 T-249 S-244 M-248 M-245 S-247 T-246	3 12 1 14	T-172 M-153 M-171 T-154 S-170 S-155 T-169 M-156 M-168 T-157 S-167 S-158 T-166 M-159 M-165 T-160 S-164 S-161 T-163 M-162	17 26 16 27	S-120 T-101 T-119 S-102 M-118 M-103 S-117 T-104 T-116 S-105 M-115 M-106 S-114 T-107 T-113 S-108 M-112 M-109 S-111 T-110	T-068 M-067M-049 T-050S-066 T-065S-051 M-052M-064 S-063T-053 S-054T-062 	31 40 30 41	43

ENTRANCE

ENTRANCE

FOLD OUT FOR POSTER PRESENTATION FLOOR PLANS

I	SUNDAY 13:30 - 15:30	MONDAY 13:45 - 15:45	TUESDAY 13:10 - 15:10	
	TRA	CK/CLASSIFICATI	ON	
1		Bio & Medical MEMS		
	EM	S Actuators & PowerMEN	NS	
		EMS Physical Sensors		
	Materials, Fabricatio	on and Packaging for Gen	eric MEMS & NEMS	A
	Ontical R	Micro- & Nanonuldics	or MEMS	T
	Techn	ical Topics on MEMS Pro	ducts	de la
		Industry Open Posters		2
N.Y.	SPEctre			A.
N. CONT				

Amy Duwel Draper Laboratory, Inc., USA

ECHANICAL SYSTEMS

以后来没非效非效

Abstract Deadline 10 September 2020

Chairs: Múria Barniol Universitat Autonoma de Barcelona, SPAIN

#Franz Lärmer Robert Bosch GmbH, GERMANY

